THERMODYNAMICS AND FLUID MECHANICS 1 - SELECTIVE SUMMARY OF FORMULAE

 \tilde{R} J/kmol K Universal gas constant =8.3145 x 10³ J/kmol K

T K, absolute temperature ($0^{\circ}C = 273K$)

Perfect Gas

Perfect gas equation pV = mRT or pv = RT or $p = \rho RT$

Specific gas constant $R = \tilde{R}/_{\tilde{m}}$ where $\tilde{R} = 8.3145 \times 10^3$ J/kmol K

Relationship between R, $c_{\text{p}},$ and c_{v}

$$\frac{C_p}{C_v} = \gamma \quad \text{and} \quad {}_{C_p - C_v} = R$$

<u>Enthalpy</u>

Enthalpy definition: H = U + pV, or h = u + pv

Change in enthalpy H_2 - $H_1 = mc_p (T_2 - T_1)$

Change in internal energy $U_2 - U_1 = mc_v (T_2 - T_1)$

Entropy Definition $dS = \left(\frac{dQ}{T}\right)_{rev}$ Change in entropy (definition: $S_2 - S_1 = \int_{1}^{2} \left(\frac{dQ}{T}\right)_{rev}$)

$$\mathbf{S}_2 - \mathbf{S}_1 = \mathbf{m} \mathbf{R} \ln \left(\frac{\mathbf{v}_2}{\mathbf{v}_1} \right) + \mathbf{m} \mathbf{c}_v \ln \left(\frac{\mathbf{T}_2}{\mathbf{T}_1} \right)$$

$$\mathbf{S}_2 - \mathbf{S}_1 = \mathbf{m} \mathbf{c}_p \ln \left(\frac{\mathbf{T}_2}{\mathbf{T}_1} \right) - \mathbf{m} \mathbf{R} \ln \left(\frac{p_2}{p_1} \right)$$

Relationship between p, v, and T for polytropic processes $(pv^n = constant)$ for a perfect gas

$$\frac{p_2}{p_1} = \left(\frac{v_2}{v_1}\right)^{-n}, \quad \frac{v_1}{v_2} = \left(\frac{T_2}{T_1}\right)^{\frac{1}{n-1}}, \quad \frac{p_2}{p_1} = \left(\frac{T_2}{T_1}\right)^{\frac{n}{n-1}}$$

NB. For a reversible adiabatic (isentropic) process the polytropic index $n{=}\gamma$

Closed-Systems/Non-Flow Processes

First law, for a cycle $W_{net} + Q_{net} = 0$

First law, for a process $W + Q = U_2 - U_1$

Work transfer for <u>reversible</u> processes:

$$\begin{split} & W = \int_{x_1}^{x_2} F dx = -\int_{v_1}^{v_2} p dV = -m \int_{v_1}^{v_2} p dv \quad \text{general case} \\ & W = -mp \; (v_2 - v_1) \qquad \text{constant pressure} \\ & W = 0 \qquad \qquad \text{constant volume} \\ & W = -m \; RT \; ln \; \left(\frac{v_2}{v_1} \right) \quad \text{isothermal, perfect gas} \\ & W = -m \; (p_2 \, v_2 - p_1 \, v_1) / (1 - n) \quad \text{polytropic, } p V^n = \text{constant} \end{split}$$

NB. For a reversible adiabatic (isentropic) process the polytropic index $n\!=\!\gamma$

Page 1 MM1TF1/MECH1004 - Selective summary of Formulae

THERMODYNAMICS AND FLUID MECHANICS 1 - SELECTIVE SUMMARY OF FORMULAE

 $\eta = \frac{\text{network done}}{\text{heatsupplied}}$

Second Law/Heat Engines

Definition of efficiency $= \frac{|W|}{|Q_1|} = 1 - \frac{|Q_2|}{|Q_1|}$

Carnot efficiency $\eta_{carnot} = 1 - \frac{T_2}{T_1}$

Open Systems/Flow Processes

Steady flow energy equation (SFEE) specific energy form

$$q + w_s = \left[u_2 + \frac{p_2}{\rho_2} + gz_2 + \frac{w_2^2}{2}\right] - \left[u_1 + \frac{p_1}{\rho_1} + gz_1 + \frac{w_1^2}{2}\right]$$

Steady flow energy equation (SFEE) power form

$$\dot{Q} + \dot{W} = \dot{m} \left[(h_2 - h_1) + (gz_2 - gz_1) + \left(\frac{v_2^2}{2} - \frac{v_1^2}{2} \right) \right]$$

Work transfer for <u>reversible</u> processes with negligible changes in kinetic and potential energy

$$\begin{split} \dot{W} &= \dot{m} \int_{1}^{2} v \, dp & \text{general case} \\ \dot{W} &= 0 & \text{constant pressure} \\ \dot{W} &= \dot{m} v (p_2 - p_1) & \text{constant specific volume/density} \\ \dot{W} &= \dot{m} RT ln \left(\frac{p_2}{p_1}\right) & \text{isothermal, perfect gas} \\ \dot{W} &= \dot{m} \frac{n}{n-1} (p_2 v_2 - p_1 v_1) \text{ polytropic, pv}^n = \text{constant} \end{split}$$

NB. For a reversible adiabatic (isentropic) process the polytropic index $n=\gamma$

Fluids Mechanics

Power = force × velocity; Pressure
$$p = \frac{F}{A}$$
; Density

 $\rho = \frac{m}{V}$

<u>Fluid Statics</u> Variation of pressure with elevation

$$\Delta p = -\rho g \Delta z = \rho g \Delta h$$

differential manometer $\Delta p = p_1 - p_2 = (\rho_m - \rho_w)g\Delta z$

inclined tube manometer $p_1 - p_2 = \rho_p gL\left(\frac{A_2}{A_1} + \sin\theta\right)$

Hydrostatic force on a submerged element

 $\delta F_{net} = \rho g h \, \delta A$

Moment due to hydrostatic force on a submerged element: $\delta M_{\rho} = (\delta F_{ref})y = (\rho gh \, \delta A)y$

Archimedes $F_{B} = W$;

Buoyancy Force = $\rho V_{sub}g$

Fluid dynamicsShear stress $\tau = \mu \frac{dv}{dy}$

Page 2 MM1TF1/MECH1004 - Selective summary of Formulae

Continuity $\dot{m}_1 = \dot{m}_2$; $\rho_1 A_1 v_1 = \rho_2 A_2 v_2$ Reynolds Number (pipe flow) $Re = \frac{\rho v d}{\mu}$ Bernoulli equation (pressure form) $p + \rho g z + \frac{1}{2} \rho v^2 = constant$ Bernoulli equation (head form) $\frac{p}{\rho g} + z + \frac{v^2}{2g} = constant$ $\frac{p}{\rho g} = H_p$ = the pressure head z = elevation head $\frac{v^2}{2g} = H_v$ = velocity head

Venturimeter equation: $\dot{V}_{real} = c_d \dot{V}_{ideal} = c_d A_2 \sqrt{\frac{2g(\Delta H_{pz})}{\left(1 - \left(\frac{A_2}{A_1}\right)^2\right)}}$

 $\dot{V}_{real} = c_d \dot{V}_{ideal}$

Orifice plate equation

$$\dot{V}_{real} = c_d A_o \sqrt{\frac{2g(\Delta H_{pz})}{\left(1 - \left(\frac{A_o}{A_1}\right)^2\right)}}$$

Pitot-static probe equation $v = \sqrt{\frac{2}{\rho}(p^+ - p)}$

SFEE, no heat transfer (head form)

$$\frac{w_s}{g} = H_{T2} - H_{T1} + H_f$$

Extended Bernoulli (special case of SFEE)

$$H_{T1} - H_{T2} = H_f$$

Head lost due to friction in pipe flow $H_f = \frac{4fl v^2}{d 2g}$

Hydraulic diameter for non-circular pipes and ducts:

$$d_h = \frac{4 \text{(flow area)}}{\text{wetted perimeter}}$$

Head loss due to friction: $H_f = K\left(\frac{v^2}{2g}\right)$ Power dissipated due to friction $\dot{W} = \dot{m} (gH_f)$ Pump equation (special case of SFEE)

$$w_s = \frac{p_2 - p_1}{\rho} + gH_f$$

pump efficiency $\eta_{HP} = \frac{w_{s,i}(ideal)}{w_s(actual)}$

<u>Linear Momentum</u> Linear momentum equation (general form)

$$F_{x,total} = \dot{m} \big(v_{x,out} - v_{x,in} \big)$$

 F_x includes all forces acting on a control volume including structural forces, pressure forces and gravitational forces.

Volume of sphere
$$V = \frac{4}{3}\pi r^3$$

Page 3 MM1TF1/MECH1004 - Selective summary of Formulae

THERMODYNAMICS AND FLUID MECHANICS 1 - SELECTIVE SUMMARY OF FORMULAE

Plane (flat) Walls

Conduction:

Heat flow $\dot{Q} = -kA \frac{(T_2 - T_1)}{\Delta x}$ Thermal resistance $\frac{\Delta x}{kA}$ K/W

Convection at a Flat Wall Solid Boundary Heat flow

$$\dot{Q} = h A (T_{surface} - T_{fluid})$$

Thermal resistance $\frac{1}{hA}$ K/W

Heat flow per unit area

$$\dot{Q}'' = \frac{\dot{Q}}{A} = -k \frac{(T_2 - T_1)}{\Delta x}$$
Thermal resistance per unit area $\frac{\Delta x}{k}$ Km²/W

Heat flow per unit area

$$\dot{Q}'' = h \left(T_{surface} - T_{fluid} \right)$$

Thermal resistance per unit area $\frac{1}{h}$ Km²/W

(Area of a cylinder is 2πrL)

Heat flow per unit length

$$\dot{Q}' = \frac{\dot{Q}}{L} = -\frac{(T_2 - T_1)}{\left(\frac{\ln(r_2/r_1)}{2\pi \ k}\right)}$$

Thermal resistance per unit length $\frac{\ln(r_2/r_1)}{2\pi \ k}$ Km/W

Heat Flow per unit length

 $\dot{Q} = h 2\pi r L \left(T_{surface} - T_{fluid}\right)$ Thermal resistance: $\frac{1}{h2\pi r L} \xrightarrow{K/W} Page 4 \text{ MM1TF1/MECH1004} - Selective summary of Formulae} \dot{Q}' = \frac{Q}{L} = h 2\pi r \left(T_{surface} - T_{fluid}\right)$ Thermal resistance per unit length $\frac{1}{h2\pi r}$ Km/W

Conduction:

Heat flow

 $\dot{Q} = -\frac{(T_2 - T_1)}{\left(\frac{\ln(r_2/r_1)}{2 \pi L k}\right)}$ Thermal resistance $\frac{\ln \binom{r_2}{r_1}}{2 \pi L k}$ Convection at a cylindrical boundary:
Heat Flow