R ~ J/kmol K Universal gas constant =8.3145 \times 10³ J/kmol K

T K, absolute temperature ($0^{\circ}C = 273K$)

Perfect Gas

Perfect gas equation $pV = mRT$ or $pv = RT$ or $p = \rho RT$

Specific gas constant $\mathsf{R}\text{=}\frac{\tilde{R}}{\tilde{m}}$ where \tilde{R} = 8.3145 x 10³ J/kmol K

Relationship between R, c_p , and c_v

$$
\frac{C_p}{C_v} = \gamma \quad \text{and} \quad c_p - c_v = R
$$

Enthalpy

Enthalpy definition: $H = U + pV$, or $h = u + pv$

Change in enthalpy H_2 - H₁ = mc_p (T₂ - T₁)

Change in internal energy $U_2 - U_1 = mc_v (T_2 - T_1)$

Entropy

Definition $dS = \left(\frac{dq}{r}\right)$ $\frac{vQ}{T}$ _{rev} Change in entropy (definition: S₂ - S₁ = $\int \left(\frac{dQ}{T}\right)$) $\int_0^2 (dQ)$ $\int_{1}^{1}\left(\frac{dQ}{T}\right)$ $\left(\frac{\text{d}\mathsf{Q}}{2}\right)$ l ſ

$$
S_2 - S_1 = m R \ln \left(\frac{v_2}{v_1} \right) + m_{C_v} \ln \left(\frac{T_2}{T_1} \right)
$$

$$
S_2 - S_1 = m c_p \ln \left(\frac{T_2}{T_1}\right) - m R \ln \left(\frac{p_2}{p_1}\right)
$$

Relationship between p, v, and T for polytropic processes $(pv^n = constant)$ for a perfect gas

$$
\frac{p_2}{p_1} = \left(\frac{v_2}{v_1}\right)^{-n}, \quad \frac{v_1}{v_2} = \left(\frac{T_2}{T_1}\right)^{\frac{1}{n-1}}, \quad \frac{p_2}{p_1} = \left(\frac{T_2}{T_1}\right)^{\frac{n}{n-1}}
$$

NB. For a reversible adiabatic (isentropic) process the polytropic index n=γ

Closed-Systems/Non-Flow Processes

First law, for a cycle $W_{net} + O_{net} = 0$

First law, for a process $W + Q = U_2 - U_1$

Work transfer for reversible processes:

$$
W = \int_{x_1}^{x_2} Fdx = -\int_{y_1}^{y_2} p dV = -m \int_{y_1}^{y_2} p dV
$$
 general case
\n
$$
W = -mp (v_2 - v_1)
$$
 constant pressure
\n
$$
W = 0
$$
 constant volume
\n
$$
W = -m RT \ln \left(\frac{v_2}{v_1}\right)
$$
 isothermal, perfect gas
\n
$$
W = -m (p_2 v_2 - p_1 v_1)/(1 - n)
$$
 polytropic, pV^n = constant

NB. For a reversible adiabatic (isentropic) process the polytropic index n=γ

Page 1 MM1TF1/MECH1004 - Selective summary of Formulae

rev

THERMODYNAMICS AND FLUID MECHANICS 1 - SELECTIVE SUMMARY OF FORMULAE

Second Law/Heat Engines

Definition of efficiency

T

1 2

heatsupplied network done η⁼

$$
=\frac{|W|}{|Q_1|}=1-\frac{|Q_2|}{|Q_1|}
$$

Carnot efficiency η $_{\rm Carnot}$ = 1 - $\frac{1}{1}$ carnot

Open Systems/Flow Processes

Steady flow energy equation (SFEE) specific energy form

$$
q + w_s = \left[u_2 + \frac{p_2}{\rho_2} + g z_2 + \frac{v_2^2}{2} \right] - \left[u_1 + \frac{p_1}{\rho_1} + g z_1 + \frac{v_1^2}{2} \right]
$$

Steady flow energy equation (SFEE) power form

$$
\dot{Q} + \dot{W} = \dot{m} \left[(h_2 - h_1) + (gz_2 - gz_1) + \left(\frac{v_2^2}{2} - \frac{v_1^2}{2} \right) \right]
$$

Work transfer for reversible processes with negligible changes in kinetic and potential energy

 $\dot{W} = \dot{m} \int_1^2 v \, dp$ general case $W = 0$ constant pressure $\dot{W} = \dot{m}v(p_2 - p_1)$) constant specific volume/density $\dot{W} = \dot{m} R T ln \left(\frac{p_2}{r_1} \right)$ p_1) isothermal, perfect gas $\dot{W} = \dot{m} \frac{n}{r}$ $\frac{n}{n-1}(p_2v_2-p_1v_1)$ polytropic, pvⁿ = constant

NB. For a reversible adiabatic (isentropic) process the polytropic index n=γ

Fluids Mechanics

Power = force × velocity; Pressure
$$
p = \frac{F}{A}
$$
; Density

V $p = \frac{m}{\sigma}$

Fluid Statics Variation of pressure with elevation

$$
\Delta p = -\rho g \Delta z = \rho g \Delta h
$$

differential manometer $\Delta p = p_{_{1}} - p_{_{2}} = (\rho_{_{m}} - \rho_{_{w}})g\Delta z$

inclined tube manometer J) $\overline{}$ L $s_1 - p_2 = \rho_p g L \left(\frac{A_2}{A_1} + \sin \theta \right)$ 1 $p_1 - p_2 = \rho_p g L \frac{A}{A}$

Hydrostatic force on a submerged element

 $\delta F_{_{net}} = \rho gh \ \delta A$

Moment due to hydrostatic force on a submerged element: $\delta M_o = (\delta F_{net})y = (pgh \delta A)y$

Archimedes $F_B = W$;

Buoyancy Force = $\left.\rho\right. V_{sub}g$

Fluid dynamics Shear stress $d\mathcal{v}$ $\frac{dy}{y}$

Page 2 MM1TF1/MECH1004 - Selective summary of Formulae

Continuity $\dot{m}_1 = \dot{m}_2$; $\rho_1 A_1 v_1 = \rho_2 A_2 v_2$ Reynolds Number (pipe flow) $Re = \frac{\rho v d}{r}$ μ Bernoulli equation (pressure form) $p + \rho gz +$ 1 2 $\rho v^2=constant$ Bernoulli equation (head form) \overline{p} ρg $+ z +$ v^2 $2g$ $= constant$ z = elevation head $\frac{1}{\rho}$ = H_p = the pressure head H g p p v^2 $\frac{v}{2g}$ = H_v = velocity head

Venturimeter equation: $\dot{V}_{real}=c_d \dot{V}_{ideal}=c_d A_2 \left| \frac{2g(\Delta H_{pz})}{\left(1-\left(A_2\right)^{2\gamma}\right)}\right|$ $\left(1-\left(\frac{A_2}{4}\right)\right)$ $\frac{A_2}{A_1}\Big)^2\Big)$

 $\dot{V}_{real} = c_d \dot{V}_{ideal}$

Orifice plate equation

$$
\dot{V}_{real} = c_d A_o \sqrt{\frac{2g(\Delta H_{pz})}{\left(1 - \left(\frac{A_o}{A_1}\right)^2\right)}}
$$

Pitot-static probe equation $v = \int_{0}^{2}$ $\frac{2}{\rho}(p^+ - p)$

SFEE, no heat transfer (head form)

$$
\frac{W_s}{g} = H_{T2} - H_{T1} + H_f
$$

Extended Bernoulli (special case of SFEE) $H_{T1} - H_{T2} = H_{f}$

Head lost due to friction in pipe flow $H_f = \frac{4fl}{d}$ \boldsymbol{d} v^2 $2g$

Hydraulic diameter for non-circular pipes and ducts:

$$
d_h = \frac{4 \text{ (flow area)}}{\text{wetted perimeter}}
$$

Head loss due to friction: $H_f = K \left(\frac{v^2}{2g} \right)$ $\frac{v}{2g}$ Power dissipated due to friction $\dot{W} = \dot{m} \ (g H_f)$ Pump equation (special case of SFEE)

$$
w_s = \frac{p_2 - p_1}{\rho} + gH_f
$$

pump efficiency $\eta_{HP} = \frac{m}{w_s (actual)}$ $\sigma_{\mu i}$ (ideal) *w actual w ideal s* $\eta_{HP} = \frac{W_{s,i}}{W}$

Linear Momentum Linear momentum equation (general form)

 $F_{\tau total} = \dot{m} (v_{\tau out} - v_{\tau in})$

 F_x includes all forces acting on a control volume including structural forces, pressure forces and gravitational forces.

Volume of sphere $V = \frac{1}{2}\pi r^3$ 3 $V = \frac{4}{\pi r}$

Page 3 MM1TF1/MECH1004 - Selective summary of Formulae

THERMODYNAMICS AND FLUID MECHANICS 1 - SELECTIVE SUMMARY OF FORMULAE

Plane (flat) Walls

Conduction:

Heat flow $\dot{Q} = -kA \frac{(T_2 - T_1)}{\Delta x}$

Thermal resistance $\frac{\Delta x}{kA}$ K/W

Convection at a Flat Wall Solid Boundary Heat flow

$$
\dot{Q} = h \ A \ (T_{surface} - T_{fluid})
$$
\nThermal resistance

\n
$$
\frac{1}{hA} \ K/W
$$

Cylindrical Walls (pipes)

Conduction:

Heat flow

 $\dot{Q} = -\frac{\left(T_2 - T_1\right)}{\left(\frac{\ln\left(r_2/r_1\right)}{2\pi L k}\right)}$ Thermal resistance $\ln \left(\frac{r_2}{r_1}\right)$ K/W Convection at a cylindrical boundary: **Heat Flow**

$$
\dot{Q} = h \ 2\pi r L \ (T_{surface} - T_{fluid}
$$

Thermal resistance:

$$
1 \qquad \qquad \text{K/W}
$$

$$
\dot{Q}'' = \frac{\dot{Q}}{A} = -k \frac{(T_2 - T_1)}{\Delta x}
$$

Thermal resistance per unit area $\frac{\Delta x}{k}$ Km²/W

Heat flow per unit area

$$
\dot{Q}'' = h \left(T_{surface} - T_{fluid} \right)
$$

Thermal resistance per unit area $\frac{1}{h}$ Km²/W

(Area of a cylinder is $2\pi rL$)

Heat flow per unit length

$$
\dot{Q}' = \frac{\dot{Q}}{L} = -\frac{(T_2 - T_1)}{\left(\frac{\ln(r_2/r_1)}{2\pi k}\right)}
$$

Thermal resistance per unit length $\frac{\ln(\frac{r_2}{r_1})}{2\pi k}$ Km/W

Heat Flow per unit length

$$
\dot{Q}' = \frac{Q}{L} = h \ 2\pi r \ (T_{surface} - T_{fluid})
$$
\nThermal resistance per unit length

\n
$$
\frac{1}{h2\pi r}
$$
\n6.6004 - Selective summary of Formulae

Page 4 MM1TF1/MECH1004 - Selective summary of Formulae $h2\pi rL$