1.	A counter current single shell and tube heat exchanger is used to cool engine oil with water in a laboratory test rig. The water flow rate is 7 litres per minute, and the engine oil flow rate is 1 litre per minute. The c_p of the oil is 2,100 J/kgK, and the density is 810 kg/m ³ .	
	(a) What are the capacity rates of the oil and water streams?	[2]
	(b) Given that the oil enters at 125°C and is required to leave at 60°C, and the water enters at 12°C, what is the exit temperature of the water?	l that [2]
	(c) What is the LMTD for this exchanger?	[4]
	(d) Given that the overall heat transfer coefficient is 900 W/m ² K, what sur area is required in order for the exchanger to fulfil the requirement?	face [5]
2.	. A pipe in a central heating circuit contains water at 70°C flowing at 5 litres per minute. The internal diameter is 10 mm and the external diameter is 12 mm. Give the thermal resistance on the outside of the tube is 4.423 K/W per m, and the external air temperature is 15°C.	
	(a) What is the bulk velocity of the water?	[2]
	(b) What is the Reynolds number?	[2]
	(c) Using the correlation $Nu = 0.023 Re^{0.8} Pr^{0.4}$, what is Nu ?	[4]
	(d) If the wall thermal resistance by conduction is negligible, what is the h transfer to the air?	eat [5]
3.	UK based power station burns coal with an ultimate analysisof 72% carbon, 149 ydrogen, 9% ash, and 5% oxygen. The burner brings in air with 5% excess abo coichiometric combustion to maintain clean combustion. The combustion of coal pomplete, and the gas stream leaves the boiler at 150°C. The plant engineers equire the following information:	
	(a) The air to fuel ratio by mass	[4]
	(b) Mass fraction of the exhaust gas stream	[5]
	(c) Apparent specific heat capacity at constant pressure of the dry gas mix 300K	xture at [4]

•

Answers:

1: oil 28.3 W/K, water 490 W/K, 15.8°C, 74.6°C, 0.028 m²

2: 1.06 m/s, 26500, 115, 12.4 W per m length of pipe.

3: 13.47, 0.201/0.011/0.787, 0.998 kJ/kgK

1 a
$$C = nicp$$
 wher : fim hubba $e = \frac{1}{4} = \frac{1}{0.00100}$
 $cp = 4.18 \text{ bs} 1/\text{bg} \text{ K}$
 $M = 0.007 \text{ corrections}$
 $qq 24.18 \text{ bs} 1/\text{bg} \text{ K}$
 $M = 0.007 \text{ corrections}$
 $qq 24.18 \text{ bs} 1/\text{bg} \text{ K}$
 $M = 0.007 \text{ corrections}$
 $qq 24.18 \text{ bs} 1/\text{bg} \text{ K}$
 $Q = 0.116 \text{ kg} \text{ K}$
 $C = 0.116 \text{ kg} \text{ K}$
 $C = 0.118 \text{ kg} \text{ K}$
 $C = 0.0135 \text{ kg} \text{ K}$
 $C = 0.021 \text{ kg} \text{ s} = 0.028 \text{ k} (125-60) = 0.786 \text{ k} \text{ k}/\text{ K}$
 $C = 0.028 \text{ k} (125-60) = 0.786 \text{ k} \text{ k}/\text{ K}$
 $C = 14 \text{ box} \text{ Kor}^{\circ} \text{ C}$ if since - relabilies not abordule
 $C = 0.0135 \text{ kg} \text{ C}$
 $C = 0.0135 \text{ kg} \text{ C}$
 $C = 0.028 \text{ k} (125-60) = 100 \text{ kg} \text{ k}$
 $C = 0.028 \text{ k} \text{ k}^{\circ} \text{ K}$
 $C = 0.028 \text{ k}^{\circ} \text{ k}^{\circ} \text{ K}$
 $C = 0.028 \text{ k}^{\circ} \text{ k}^{\circ} \text{ K}$
 $C = 0.028 \text{ k}^{\circ} \text{ k}$

$(0)_{1}$	2.64	0.184		
4,0	1.26	0.085		
Nz	10.33	0.718		
0z	0.15	0.010		
14.38				