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BOUNDARY LAYERS 

INTRODUCTION 

In this section we are looking at external flows around bodies or objects fully immersed in a fluid stream.  As 

with the internal flows of Thermofluids 1, there will be viscous effects and with external flows these occur near 

the body and in its wake.  Far from the body, often the flow can be treated as inviscid. 

With internal flows, as the boundary layers grow thicker they eventually meet in the middle of the pipe/duct.  

With external flows the flow is unconfined and the boundary layer can continue to grow no matter how thick 

they become.  There are many engineering situations that require the study of external flows: 

 Aeroplanes, rockets, projectiles (aerodynamics) 

 Ships, submarines, torpedoes (hydrodynamics) 

 Cars, lorries, trains etc  

 Buildings, bridges 

 Moored platforms, buoys, cables, pilings, breakwaters (ocean-related) 

There are essentially three techniques used to study external flows and these are: 

(i) Numerical methods (eg computational fluid dynamics, CFD) 

(ii) Experimentation 

(iii) Boundary layer theory 

CFD is a huge field and with ever increasing computational capacity becoming affordable it is now possible to 

investigate a huge range of practical engineering problems using this approach.  Conventional CFD still does not 

cope well with transition from laminar to turbulent transitional flow although direct numerical simulation (DNS) 

and large eddy simulation (LES) methods are somewhat bridging the gap.  CFD is not studied as part of this 

module. 

Experimentation remains a common method despite the inherent cost and difficulties in measuring non-

intrusively (or minimizing such effects).  Dimensional analysis plays a significant role in supporting intelligent 

data analysis and is studied later in this module. 

Boundary layer theory allows us to get some theoretical basis for understanding and predicting boundary layer 

flows.  The full fluid flow equations (the Navier-Stokes equations, derived later in the module) are simplified for 

the boundary layer such that they can be solved (in general the N-S equations are not amenable to anything 

other than numerical solution, hence the prevalence of CFD methods).  The boundary layer solution can then be 

“patched” onto the far-field, inviscid flow.  Boundary layer theory can be used to predict flow separation but is 

not applicable in the low pressure wake regions subsequently created. 
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BOUNDARY LAYER DESCRIPTION 

Consider the case of a uniform flow stream of velocity U moving parallel to a sharp flat plate of length L.  The 

Reynolds number is defined as 𝑅𝑒 =
𝜌𝑈𝐿

𝜇
.  Where the Reynolds number is very low the viscous region is broad, 

extending ahead of the plate as well as to the sides, as illustrated in Figure 1. 

 

Figure 1: Low Reynolds number flow past a sharp flat plate [1] 

We can define a boundary layer thickness, , which marks the point where the velocity parallel to the plate is 

99% of the free stream velocity, and as Figure 1 shows, this region is large for low Reynolds number flow.   

In contrast, when the Reynolds number is large, the boundary layer is initially laminar but transitions to turbulent 

(notwithstanding the laminar sublayer of course) at some distance from the front of the plate.  The boundary 

layers are very thin and thus there is only a small overall displacement effect on the free stream. This type of 

flow is illustrated in Figure 2.  Such flows are also far more likely to occur in most practical engineering 

applications.  For example, at 500 miles per hour, for a 2m plate moving in atmospheric air the Reynolds number 

is 3x107. 

 

Figure 2: High Reynolds number flow past a sharp flat plate [1] 

  

Laminar boundary 

layer velocity profile 

Turbulent boundary 

layer velocity profile 
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BOUNDARY LAYER THICKNESS 

Because the velocity of a boundary layer approaches the free stream velocity asymptotically, the thickness is 

defined according to a chosen convention. The thickness  mentioned above is based on the boundary layer 

velocity achieving 99% of free stream velocity. There are two other standard methods of defining the boundary 

layer thickness that are commonly used and these are covered in this section. 

(i) Displacement thickness, * 

This definition considers the reduction of volume flowrate caused by the boundary layer.  The flow per unit 

width (into the page) through a small element of thickness y is u y. If there was no boundary layer the 

flow through the same element would have been um y.  The reduction in volume flowrate caused by the 

boundary layer is therefore the shaded area in Figure 3a.  If you displaced the actual surface by a distance 

*, with no boundary layer then the same reduction in volume flowrate is found as illustrated in Figure 3b. 

 
Figure 3: Displacement thickness, * 

a) Boundary layer profile [2], b) equivalent flow  

Mathematically the displacement thickness is: 

𝛿∗ = ∫ (1 −
𝑢

𝑢𝑚

)
∞

0

𝑑𝑦 

Eq 1 

(ii) Momentum thickness,  

Similar to the displacement thickness, in this case the momentum reduction is considered rather than the 

volume flowrate.  The momentum of the fluid passing through the small element show in Figure 3 is 

(𝜌𝑢 𝛿𝑦)𝑢 per unit width, whereas without the boundary layer the momentum (of the same mass of fluid) 

would have been (𝜌𝑢 𝛿𝑦)𝑢𝑚.  The total loss of momentum is ∫ 𝜌(𝑢𝑚 − 𝑢)
∞

0
𝑢 𝑑𝑦 and this is equated to the 

momentum of a volume of frictionless fluid of thickness , (𝜌𝑢𝑚𝜃)𝑢𝑚.  Thus the momentum thickness is 

shown to be: 

𝜃 = ∫
𝑢

𝑢𝑚

(1 −
𝑢

𝑢𝑚

)
∞

0

𝑑𝑦 

Eq 2 

The ratio of the displacement thickness to the momentum thickness is called the shape factor, H, 

𝐻 =
𝛿∗

𝜃
 

Eq 3 

FLAT PLATE BOUNDARY LAYER 

Imaginary new surface 

Um 

Imaginary new 

velocity profile 
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SKIN FRICTION AND DRAG  

As fluid flows past a flat plate a shear force is exerted on it due to friction between the surface of the body and 

the fluid.  There are two ways of approaching this, one from the point of view of the fluid and the other from 

the point of view of the shear stress on the plate.   

By applying the linear momentum equations introduced in Thermofluids 1 the force on the fluid can be 

investigated further. 

Recall that the force exerted on a fluid in the x-direction is equal to its rate of change of momentum in the x-

direction: 

∑ 𝐹𝑥 =
𝑑

𝑑𝑡
(𝑚𝑢) 

Eq 4 

And that under steady conditions (no change of momentum within the control volume) this becomes: 

∑ 𝐹𝑥 = ∑(𝑚̇𝑖𝑢𝑖)
𝑜𝑢𝑡

− ∑(𝑚̇𝑖𝑢𝑖)
𝑖𝑛

 

Eq 5 

Or in words, “the net force on a control volume in the x-direction is equal to the sum of the outlet momentum 

fluxes minus the sum of the inlet momentum fluxes” [1] 

Consider the boundary layer shown in Figure 4.  Upstream the flow is uniform at velocity Uo with a boundary 

layer developing along the length of the plate.  Line 2 is a stream line just outside the boundary layer (remember 

flow is wholly along a streamline so there will be no flow across line 2).  We assume there is no external pressure 

gradient and so the only force acting on the control volume created by lines 1-4 is from the change in 

momentum. 

 

Figure 4: Boundary layer on a flat plate with appropriate control volume [3] 

Momentum of fluid entering at 1 (for width b into page) is: (𝜌𝑈𝑜ℎ𝑏)𝑈𝑜 

Momentum of fluid leaving at 2 is:∫ (𝜌𝑢𝑏𝑑𝑦)
𝛿

0
𝑢 

The drag force acting on one side of the plate, D, is therefore: 

𝐹𝑥 = −𝐷 = ∫ 𝜌𝑏𝑢2𝑑𝑦
𝛿

0

− 𝜌ℎ𝑏𝑈𝑜
2 

Eq 6 

Height h is not known, but we can apply continuity between 1 and 2 as there is no flow across 2 or 4.  
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This tells us that the mass flow entering the control volume is equal to the mass flow leaving it: 

𝜌ℎ𝑏𝑈𝑜 = ∫ 𝜌𝑏𝑢𝑑𝑦
𝛿

0

 

So ℎ = ∫
𝑢

𝑈𝑜
𝑑𝑦

𝛿

0
 

Thus 𝐷 = 𝜌𝑏 ∫ 𝑢(𝑈𝑜 − 𝑢)𝑑𝑦
𝛿

0
 

Eq 7 

This equation was first derived by Kármán in 1921 who further noted that as the momentum thickness is given 

by Eq 2, if we neglect the difference between integrating to infinity and integrating to  then we can re-write 

the equation for D as: 

𝐷 = 𝜌𝑏𝑈𝑜
2𝜃 

Eq 8 

Momentum thickness can thus be seen as a measure of total plate drag.  Of course this drag force arises because 

of shear between fluid and plate at the interface and so the drag force is the summation (integral) of the shear 

over the plate surface.  Thus: 

𝐷 = 𝑏 ∫ 𝜏𝑤

𝑥

0

𝑑𝑥 

And differentiating both sides with respect to x give us: 

𝑑𝐷

𝑑𝑥
= 𝑏𝜏𝑤 

But we also know (from Eq 8) that 
𝑑𝐷

𝑑𝑥
= 𝜌𝑏𝑈𝑜

2 𝑑𝜃

𝑑𝑥
 

So 𝜏𝑤 = 𝜌𝑈𝑜
2 𝑑𝜃

𝑑𝑥
 

Eq 9 

Note that this is the value of wall shear stress, 𝜏𝑤 existing at distance x from the start of the plate.  It is a point 

value. 

This equation is valid for both laminar and turbulent flow.  Shear stress (skin friction) is often expressed as a 

skin friction coefficient: 

𝐶𝑓 =
𝜏𝑤

1
2𝜌𝑈𝑜

2
 

Eq 10 

And combining these two gives us: 

𝐶𝑓 = 2
𝑑𝜃

𝑑𝑥
 

Eq 11 
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LAMINAR BOUNDARY LAYER 

Whether the far field flow is laminar or turbulent, the first part of the boundary layer will be laminar.  For a flat 

plate the laminar part of the boundary layer is often short (and therefore negligible) but there are situations 

where laminar boundary layers are important.  A German engineer (PRH Blasius, 1883-1970) obtained analytical 

equations for laminar boundary layer flow.  Full derivation of the Blasius equations can be found in [1] and [2].  

The equations can be solved numerically to yield the laminar boundary layer thickness: 

𝛿

𝑥
≈

5

𝑅𝑒𝑥
0.5

 

Eq 12 

𝑅𝑒𝑥 is the Reynolds number based on x, the distance along the plate from the start:  

𝑅𝑒𝑥 =
𝜌𝑈𝑜𝑥

𝜇
 

For boundary layer flows transition to turbulence can occur over a range of boundary layer Reynolds numbers.  

For typical engineering surfaces in atmospheric type (gusty!) free streams an accepted value is: 

𝑅𝑒𝑥,𝑡𝑟𝑎𝑛𝑠 = 5 × 105 [1]. 

Eq 12 is generally taken to be valid for the range 103<Rex<106. 

The velocity profile in a laminar boundary layer is approximately parabolic, having the form: 

𝑢

𝑈𝑚

=
𝑦

𝛿
(2 −

𝑦

𝛿
) 

Eq 13 

Figure 5 shows a comparison of this approximate parabolic profile with the exact Blasius profile, where it is seen 

that the parabolic approximation is very close indeed. 

 

 

Figure 5: Dimensionless flat plate velocity profiles, laminar and turbulent [1] 

 

Eq 25 

 

Eq 13 
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Using Blasius solution for the exact velocity profile in a laminar boundary layer the wall shear and displacement 

thickness can be calculated and these are: 

𝐶𝑓 =
0.664

𝑅𝑒𝑥
0.5

 

Eq 14 

And 
𝛿∗

𝑥
=

1.721

𝑅𝑒𝑥
0.5  

Eq 15 

The momentum thickness can also be computed and is found to be: 

𝜃

𝑥
=

0.664

𝑅𝑒𝑥
1/2

 

Eq 16 

Thus the shape factor (Eq 3) for laminar flow is:  𝐻 =
𝛿∗

𝜃
=

1.721

0.664
= 2.59 

The drag coefficient for a flat plate is defined as: 

𝐶𝐷 =
𝐷

𝑏𝐿⁄
1
2𝜌𝑈𝑜

2
 

Eq 17 

And is found to be: 𝐶𝐷 =
1.328

𝑅𝑒𝐿
0.5 

Eq 18 

The drag coefficient for a flat plate is twice the value of the skin friction coefficient at the trailing edge (noting 

that D is the drag force on one side of the plate). 

 

 

 

 

 

 

 

 

Worked Example 1 

A long thin flat plate is held parallel to a stream of water (take =1000kg/m3 and =0.001) moving 

at 0.1 m/s.  How thick is the boundary layer at a distance of 2m from the leading edge of the plate? 

Assuming transition to a turbulent boundary layer occurs at a Reynolds number of 106 how far 

along the plate does this occur? 

 

Answers: 22 mm, 10m 

Worked Example 2 

A thin flat plate 20m wide by 5 m long is held parallel in a stream of air (take =1.2 kg/m3 and 

=1.8x10-5 kg/ms) moving at 0.8 m/s.   

What is the total drag force exerted on the plate (ie both sides of the plate) by the air? 

 

Answer: 0.2N 
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TURBULENT BOUNDARY LAYER 

In turbulent flow near a wall or surface the shear stress is, in general, made up from two parts, the laminar shear 

stress and the turbulent shear stress: 

𝜏 = 𝜏𝑙𝑎𝑚 + 𝜏𝑡𝑢𝑟𝑏 = 𝜇
𝜕𝑢

𝜕𝑦
+ 𝜌𝑢′𝑣′ 

Where u’ and v’ are the fluctuating parts of velocities u and v (remembering that for turbulent flow each velocity 

component has a mean velocity component plus a random fluctuating component, ie 𝑢 = 𝑢̅ + 𝑢′ 

A typical turbulent velocity profile is shown in Figure 6.  In the near wall layer viscous shear dominates and in 

the outer layer turbulent shear dominates.  In the overlap layer both types of shear are present. 

 

 

 

 

 

 

 

 

 

Figure 6: Velocity distribution in turbulent boundary layer 

Dimensional reasoning (by Prandtl and Kármán) together with experimental data have led to a single graph that 

represents turbulent wall or boundary layer flow.  This graph is often referred to as the law of the wall. 

 

Figure 7: Velocity relationships within turbulent boundary layers 

The x-axis of this graph is logarithmic and plots y+, a non-dimensional distance perpendicular to the surface: 

𝑦+ =
𝜌𝑦𝑢∗

𝜇
 

Eq 19 

Where 𝑢∗ = √
𝜏𝑤

𝜌
 

Eq 20 

y 

Viscous wall layer 

overlap layer 

Outer, turbulent layer 

x 

𝑢

𝑢∗
=

1

𝐾
𝑙𝑛

𝜌𝑦𝑢∗

𝜇
+ 𝐵 

𝑢+ = 𝑦+ 
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and u* is called the friction velocity (because it has units of m/s, not because it is a velocity!). 

The y-axis of the graph is u+, a non-dimensional velocity where 

𝑢+ =
𝑢

𝑢∗
 

Eq 21 

In the viscous sublayer 𝒖+ = 𝒚+ 
Eq 22 

In the far outer region the so-called velocity defect law applies, where 
𝑈−𝑢

𝑢∗  is a function of 
𝑦

𝛿
.  Different curves 

are found here depending on whether it is pipe flow, flat plate flow etc and whether the pressure is increasing 

or decreasing.  In between these two regions is an overlap region described by the formula: 

𝑢

𝑢∗
=

1

𝐾
𝑙𝑛

𝜌𝑦𝑢∗

𝜇
+ 𝐵 

Eq 23 

It turns out that this logarithmic region approximates almost the entire velocity profile and is (surprisingly) 

consistent with experimental data.  Setting K=0.41 and B=5.0 approximates the full range of smooth wall 

turbulent flows.  As the relationship is logarithmic it appears as a straight line on Figure 7. 

If we neglect the laminar sublayer and apply this equation across the entire boundary layer, then substituting 

y= for the edge of the boundary layer gives us: 

𝑈

𝑢∗
=

1

𝐾
𝑙𝑛

𝜌𝛿𝑢∗

𝜇
+ 𝐵 

Eq 24 

Prandtl observed that turbulent velocity profiles approximately follow a 1/7th power law: 

(
𝑢

𝑈
)

𝑡𝑢𝑟𝑏
≈ (

𝑦

𝛿
)

1/7

 

Eq 25 

This is the dotted line shown amongst the turbulent profiles on Figure 5, where it can be seen that this is a 

good approximation.  Using some clever approximations, Prandtl was able to integrate Eq 11 for turbulent 

flow, yielding: 

𝛿

𝑥
≈

0.16

𝑅𝑒𝑥
1/7

 

Eq 26 

Compare this to the equivalent for laminar flow Eq 12 and it is apparent that the turbulent boundary layer grows 

far more quickly than a laminar one.   

Using the 1/7th power law approximation for the boundary layer velocity profile the displacement and 

momentum thicknesses can also be calculated and these are found to be: 

𝛿∗ =
𝛿

8
 and 𝜃 =

7𝛿

72
.  Thus for turbulent flow 𝐻 =

𝛿∗

𝜃
=

1/8

7/72
= 1.3 

Following on from Eq 26 it can further be shown that: 

𝐶𝑓 ≈
0.027

𝑅𝑒𝑥
1/7

 

Eq 27 
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The drag coefficient can also be evaluated as 

𝐶𝐷 =
0.031

𝑅𝑒𝐿
1/7

 

Eq 28 

An alternative approximation utilizes the Blasius approximation for wall shear stress in turbulent flow in smooth 

pipes (see [4] or [5] for derivation).  This has some advantages compared to that used by Prandtl as the 1/7th 

power law profile of Eq 25 does not really hold at the wall.  Using this approach we obtain: 

𝛿

𝑥
≈

0.382

𝑅𝑒𝑥
1/5

 

Eq 29 

FLAT PLATE BOUNDARY LAYER SUMMARY 

The quantities derived for laminar a turbulent boundary layers on a smooth flat plate are summarized in Table 

1 below. 

Table 1: Summary of correlations and formulae for flat plate boundary layers 

Quantity Laminar flow Turbulent flow 

Prandtl approximation 

Turbulent flow 

Blasius pipe flow 
approximation 

Boundary layer 

thickness,  

𝛿

𝑥
≈

5

𝑅𝑒𝑥
0.5

 

 

𝛿

𝑥
≈

0.16

𝑅𝑒𝑥
1/7

 
𝛿

𝑥
≈

0.37

𝑅𝑒𝑥
1/5

 

Displacement 
thickness, 𝛿∗ 

𝛿∗

𝑥
=

1.721

𝑅𝑒𝑥
0.5

 
𝛿∗

𝑥
≈

0.02

𝑅𝑒𝑥
1/7

 
𝛿∗

𝑥
≈

0.046

𝑅𝑒𝑥
1/5

 

Momentum 

thickness,  

𝜃

𝑥
=

0.664

𝑅𝑒𝑥
1/2

 
𝜃

𝑥
=

0.0156

𝑅𝑒𝑥
1/7

 
𝜃

𝑥
=

0.036

𝑅𝑒𝑥
1/5

 

Shape factor, H 2.59 1.28 1.28 

Skin friction 
coefficient, Cf 

𝐶𝑓 =
0.664

𝑅𝑒𝑥
0.5

 𝐶𝑓 ≈
0.027

𝑅𝑒𝑥
1/7

 𝐶𝑓 ≈
0.058

𝑅𝑒𝑥
1/5

 

Drag coefficient, CD 
𝐶𝐷 =

1.328

𝑅𝑒𝑥
1/2

 𝐶𝐷 =
0.031

𝑅𝑒𝑥
1/7

 𝐶𝐷 =
0.7251

𝑅𝑒𝑥
1/5

 

 

 

 

 

 

 

 

 

 

  

Worked Example 3 

A thin flat long plate is held parallel in a stream of air (take =1.2 kg/m3 and =1.8x10-5 kg/ms) 

moving at 25 m/s.  What is the percentage difference in the boundary layer momentum thickness 

calculated using the Blasius approximation compared to that of Prandtl at a distance 2m from the 

leading edge of the plate? 

 

Answer: 2.6% 
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EFFECT OF ROUGHNESS 

Roughness has quite a significant effect on the drag coefficient, primarily by: 

 Promoting an earlier transition to turbulence 

 Modifying the velocity profile of the turbulent boundary layer 

The roughness parameter is 
𝑥

𝜀
 or 

𝐿

𝜀
 where  is the mean roughness height (similar to the pipe flow equivalent 

where the roughness parameter is 
𝜀

𝑑
).  The surface can be treated as hydraulically smooth if the Reynolds number 

based on friction velocity u* (Eq 20) and the roughness height is less than 5.  Ie  

𝜌𝑢∗𝜀

𝜇
< 5 

Eq 30 

Figure 8 shows a chart correlating drag coefficient CD with Reynolds number and roughness parameter.  The 

laminar and turbulent equations for CD for smooth plates appear at the bottom of the chart with the transition 

zone bounded by the equations of Eq 32.  Lines of increasing roughness are on the right of the chart.  As can be 

seen, towards the top right of the diagram CD is independent of Reynolds number and depends only on the 

roughness parameter. This region is described as “fully rough” and curve fitting to the data gives empirical 

relationships for Cf and CD in this region: 

𝐶𝑓 = (2.87 + 1.58𝑙𝑜𝑔
𝑥

𝜖
)

−2.5

, 𝐶𝐷 = (1.89 + 1.62𝑙𝑜𝑔
𝐿

𝜖
)

−2.5

 

Eq 31 

 

Figure 8: Drag coefficients of laminar and turbulent boundary layers on smooth and rough flat plates [1] (analogous to Moody chart for 

pipe flow) 

It is difficult to now the drag coefficient in the transition region because the onset of transition depends on 

many factors.  The region is bounded by the two lines shown (Eq 32) and it is usually best to assume transition 

along the left-hand line unless you have additional knowledge. 

 

𝐶𝐷 ≈

{

0.031

𝑅𝑒𝐿
1/7 −

1440

𝑅𝑒𝐿
       𝑅𝑒𝑡𝑟𝑎𝑛𝑠 = 5 × 105

0.031

𝑅𝑒𝐿
1/7 −

8700

𝑅𝑒𝐿
       𝑅𝑒𝑡𝑟𝑎𝑛𝑠 = 3 × 106

     

Eq 32 

Eq 18 

Eq 28 

Eq 31b 

Eq 32 
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Worked Example 4 

A hydrofoil 0.4 m long and 2m wide is placed in a sea water flow of 14 m/s (density 1020 kg/m3 and 

viscosity 0.0012 kg/ms).  When new the plate is smooth but after a few years barnacles have grown 

on the surface creating a mean roughness height of 0.5mm.  By how much will the drag on the 

plate have increased?  

 

Answer: 943.6N 
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EFFECT OF PRESSURE GRADIENT 

So far we have only considered situations with a zero pressure gradient.  Consider flow around a circular cylinder, 

as illustrated in Figure 9.  Only at very low flows (called Stokes flow, or creeping flow) will the boundary layer 

remain attached all the way round the sphere.  For Reynolds numbers greater than around 1 the boundary layer 

will detach and a low pressure wake region forms behind the cylinder.  The boundary layer detaches because of 

the pressure gradient “along” the boundary layer. 

 

Figure 9: Flow past a circular cylinder.  For Re>1 the flow separates and a low pressure wake region is formed )from [1]) 

A boundary layer loses kinetic energy (it slows down).  In a favourable pressure gradient, pressure is decreasing 

(
𝑑𝑝

𝑑𝑥
< 0,

𝑑𝑈

𝑑𝑥
> 0) and so the “pressure force” is acting in the direction of the flow.  The boundary layer can 

therefore replenish its energy from the main flow and flow separation will not occur. In an adverse pressure 

gradient (
𝑑𝑝

𝑑𝑥
> 0,

𝑑𝑈

𝑑𝑥
< 0)  the “pressure force” is acting against the flow and so the lost energy is not 

replenished. This will lead to further slowing of the boundary layer near the surface and ultimately to flow 

separation.  At the point of separation the wall shear stress goes to zero 𝜏𝑤 = 0.  This is illustrated in Figure 10. 

Once the boundary layer has separated from the surface a low pressure wake region is created.  Consequently 

there is a pressure difference across the body that contributes to the drag.  There is no theory that enables 

quantitative calculation of the forces and flow behavior around an arbitrary body immersed in an arbitrary flow 

and experimentation is often the only option (although CFD is becoming more prevalent and valuable). 

 

 

Flow symmetrical only 
for Re<1 (Stokes flow) 
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Figure 10: Effect of pressure gradient on boundary layer profiles (PI=point of inflexion) 
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