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These notes provide some text to the slides for Fluids Topic 1 − Navier-Stokes equations, presented

in class in the module of Thermodynamics and Fluid Mechanics 2. The present notes follow the

material in Chapter 4 of the book of F. White, Fluid Mechanics, 8th Edition. The book can be found

in the George Green library of the University of Nottingham, see this link. For further reading and

assessment in this topic please refer to F. White book, Chapter 4 and exercises at the end of it.
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1 VELOCITY OF A FLUID IN MOTION

1 Velocity of a fluid in motion

The velocity of a fluid in motion, see Fig. 1, can be represented as a vector field that varies in space

(x, y, z) and time t, and therefore expressed as:

V(x, y, z, t) = u(x, y, z, t)̂i + v(x, y, z, t)̂j + w(x, y, z, t)k̂, (1)

where î, ĵ, k̂ indicate the unit vectors in the direction of the x, y, and z axes of a three dimensional

Cartesian coordinate system, and u, v, and w represent the velocity components (units: m/s) along

the three coordinate directions.

But which equations do govern the flow field? In principle, we have:

• Conservation of mass

• Conservation of momentum

• Conservation of energy

However, if the flow is isothermal, the mass and momentum equations alone are sufficient to describe

the flow of a fluid. In the present notes, we focus on the conservation of mass and momentum.

For simplicity, we derive the flow equations for a two-dimensional configuration, and we will extend

the derivation to a three-dimensional flow afterwards. An important note: in nature, flow is always

3D; however, under certain conditions, the flow can be simplified using a 2D description. For example,

if the cylinder in Fig. 1 is very long in the direction perpendicular to the page (say z), we can imagine

that, far from the cylinder ends, the flow field will appear to be independent of the z location, and

the velocity component w will be zero. In this case, far from the cylinder ends the velocity field will

be well described with a two-dimensional vector field:

V(x, y, t) = u(x, y, t)̂i + v(x, y, t)̂j. (2)

Figure 1: Velocity field for flow past a cylinder. Flow is from left to right. The velocity vectors (not

to scale) indicate the direction of the flow, while the colours indicate the magnitude of the velocity

field.
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2 CONSERVATION OF MASS

This is the situation that we assume as a starting point to derive the flow equations. The extension

to 3D flows is trivial, although lengthy.

2 Conservation of mass

Let’s start considering a generic, fixed control volume within the flow region in Fig. 1, bounded

by a closed surface through which the fluid penetrates. The conservation of mass, also known as

continuity, requires that the temporal variation of the mass in the control volume must be equal to

the net inflow/outflow through the control volume boundary surface.

Let’s consider a 2D configuration, and an infinitesimal fixed control volume of width dx, height

dy, and reference depth 1 in the z direction, as skecthed in Fig. 2. We denote as M the mass included

in the control volume (units: kg), Ṁin the mass flow rate entering the control volume through the

west and south faces (units: kg/s), and Ṁout the mass flow rate exiting the control volume through

the north and east faces. As stated above, continuity requires that:

∂M

∂t
+ Ṁout − Ṁin = 0, (3)

which has units kg/s. We need now to express the three terms in the equation above. The mass

included in the control volume is:

M =

∫
volume

ρ(x, y, t) dx dy, (4)

where ρ denotes the density of the fluid, units kg/m3, which depends on both space and time. Note

that the differential in the integral should be dx dy 1, to account for the control volume extension

along z, but the 1, that has the unit of a length, is dropped for simplicity of notation. The temporal

variation of the mass in the control volume can be expressed as:

∂M

∂t
=

∂

∂t

∫
volume

ρ(x, y, t) dx dy =

∫
volume

∂ρ

∂t
dx dy, (5)

Figure 2: Control volume utilised to derive the equation governing the conservation of mass.
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2 CONSERVATION OF MASS

where the derivative enters the integral as the control volume is fixed. We assume that the control

volume is so small that the volume integral reduces to a differential term:∫
volume

∂ρ

∂t
dx dy ≈ ∂ρ

∂t
dx dy. (6)

To express Ṁin, we refer to u and v as the horizontal and vertical components of the velocity on the

west and south faces, respectively, so that:

Ṁin = ρu dy + ρv dx, (7)

where ρu dy is the mass flow rate through the west face and ρv dx the mass flow rate through the

south face. Again, bear in mind that the control volume extension along z is 1. To express Ṁout, we

need to know the flow rates on the east and north faces, keeping in mind that ρ, u and v vary in space.

To this end, we can use the first-order Taylor expansion of a generic function of two variables f(x, y)

along each direction:

f(x+ dx, y) = f(x, y) +
∂f

∂x
dx, (8a)

f(x, y + dy) = f(x, y) +
∂f

∂y
dy, (8b)

so that on the east face (x+ dx) the outlet mass flow is:[
ρu+

∂(ρu)

∂x
dx

]
dy,

and on the north face (y + dy):[
ρv +

∂(ρv)

∂y
dy

]
dx.

Therefore,

Ṁout =

[
ρu+

∂(ρu)

∂x
dx

]
dy +

[
ρv +

∂(ρv)

∂y
dy

]
dx, (9)

where both terms at the right-hand side should be multiplied by 1 to account for the z extension of

the control volume. Now, introducing Eqs. (5)-(6), (7), and (9), in Eq. (3), and deleting the terms

ρu dy and ρv dx that appear twice with opposite signs, we obtain:[
∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρv)

∂y

]
dx dy = 0. (10)

Note that the element volume is actually dx dy 1 (units: m3) so that Eq. (10) is still in kg/s units, as

for Eq. (3). Now, the element volume can be eliminated, thus leading to the final expression for the

conservation of mass for an infinitesimal control volume:

∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρv)

∂y
= 0, (11)

which is in kg/(m3s) units, i.e. mass per unit volume and time.

Incompressible flow

In the special case of an incompressible flow, the density changes are negligible and therefore ∂ρ/∂t = 0,

and ρ can be regarded as a constant. This simplifies the continuity equation as:

∂u

∂x
+
∂v

∂y
= 0. (12)
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3 CONSERVATION OF MOMENTUM

Figure 3: Control volume utilised to derive the equation governing the conservation of momentum.

3 Conservation of momentum

We consider the same two-dimensional control volume utilised to derive the continuity equation, see

now Fig. 3. The conservation of momentum requires that the temporal variation of the momentum in

the control volume plus the sum of the inflow/outflow fluxes through the control volume faces must be

equal to the net force acting on the control volume. We denote as Q the momentum included in the

control volume (units: kg ·m/s), Q̇in the momentum flow rate entering the control volume through

the west and south faces (units: kg ·m/s2), and Q̇out the momentum flow rate exiting the control

volume through the north and east faces. Note that the momentum is a vectorial quantity and has as

many components as the velocity field. Therefore, the conservation of momentum states that:

∂Q

∂t
+ Q̇out − Q̇in =

∑
i

Fi, (13)

where Fi represents the i − th force acting on the control volume. Note that Eq. (13) has units

kg ·m/s2, which coincides with newton, N. Let’s now work out the left-hand side of the momentum

equation. Following the same reasoning adopted for the continuity equation,

Q =

∫
volume

ρV dx dy, (14)

where the differential in the integral should be dx dy 1 to account for the control volume extension

along z, but the 1 is dropped for simplicity of notation. Analogously to Eqs. (5)-(6):

∂Q

∂t
≈ ∂(ρV)

∂t
dx dy. (15)

To express Q̇in, we need to express the momentum flow rate through the west and south faces of

the control volume, see the schematic in Fig. 3. Through the west face, there exists a mass flow rate

(ρu)dy which carries a momentum flow rate (ρu)Vdy; similarly, through the south face, there exists

a mass flow rate (ρv)dx which carries a momentum flow rate (ρv)Vdx, so that the total inflow of

momentum is:

Q̇in = ρuV dy + ρvV dx. (16)
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4 FORCES ACTING ON A FLUID IN MOTION

The outgoing momentum flow rate requires knowledge of the momentum on the east and north faces,

which can be expressed using the first-order Taylor expansion of the momentum as done previously

for the mass flow rate, so that on the east face (x+ dx):[
ρuV +

∂(ρuV)

∂x
dx

]
dy,

and on the north face (y + dy):[
ρvV +

∂(ρvV)

∂y
dy

]
dx.

This leads to:

Q̇out =

[
ρuV +

∂(ρuV)

∂x
dx

]
dy +

[
ρvV +

∂(ρvV)

∂y
dy

]
dx. (17)

Introducing now Eqs. (15), (16), and (17) into Eq. (13):[
∂(ρV)

∂t
+
∂(ρuV)

∂x
+
∂(ρvV)

∂y

]
dx dy =

∑
i

Fi, (18)

where the element volume is actually dx dy 1 (units: m3) so that Eq. (18) is still in N units, as for

Eq. (13). Note that the equation above is a vectorial equation and it has components along the x and

y axes:[
∂(ρu)

∂t
+
∂(ρuu)

∂x
+
∂(ρvu)

∂y

]
dx dy =

∑
i

Fi,x, (19a)[
∂(ρv)

∂t
+
∂(ρuv)

∂x
+
∂(ρvv)

∂y

]
dx dy =

∑
i

Fi,y. (19b)

We can manipulate further the terms between square brackets in both Eqs. (19a) and (19b); let’s

consider Eqs. (19a) and apply the rule for developing the derivative of the products of functions:

∂(ρu)

∂t
+
∂(ρuu)

∂x
+
∂(ρvu)

∂y
= u

∂ρ

∂t
+ ρ

∂u

∂t
+ u

∂(ρu)

∂x
+ (ρu)

∂u

∂x
+ u

∂(ρv)

∂y
+ (ρv)

∂u

∂y
=

= u

[
�����������∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρv)

∂y

]
+ ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= ρ

(
∂u

∂t
+ V · ∇u

)
, (20)

where the term between square brackets on the second line is zero due to continuity. The operation

V·∇u indicates a scalar product between the vectors V and∇u. It is left as an exercise to demonstrate

that:

∂(ρv)

∂t
+
∂(ρuv)

∂x
+
∂(ρvv)

∂y
= ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= ρ

(
∂v

∂t
+ V · ∇v

)
. (21)

4 Forces acting on a fluid in motion

We have sorted out the left-hand side of the momentum equation, let’s now focus on the right-hand

side, i.e. the forces acting on a fluid in motion. But which forces do act on a fluid in motion? We

have:
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5 REPRESENTATION OF THE SURFACE STRESSES

• Body forces, which are proportional to the mass of the control volume, for instance the gravity

force:

Fg = Mg ≈ ρg dx dy, with g = gx̂i + gy ĵ, (22)

where we use the ≈ symbol because in reality we should perform an integral of ρg in the control

volume. Once more, note that the element volume is actually dx dy 1, so that the units of Fg

are newton.

• Surface forces, which are the stresses acting along the surfaces of the control volume and are

therefore proportional to the surface of the element. As we will see below, there are two kind

of surface stresses: the (i) pressure and the (ii) viscous stresses, with the latter being zero for a

fluid at rest.

5 Representation of the surface stresses

On each face of the control volume, there exist a stress normal to the surface and another one tangential

to the surface, see the schematic in Fig. 4. The convention is to represent the normal stresses pointing

outward the control volume, while the tangential stresses on opposite faces of the control volume must

point on opposite directions. The stress acting on a generic face is denoted as σi,j , with i indicating

that the stress applies on a face orthogonal to the i−axis, and j indicating that the stress is directed

on the j−axis. Note that the units for σ are N/m2 ≡ Pa, i.e. a force per unit surface, where the

surface is the area of the control volume face to which σ applies. From this convention, it follows that

the normal and tangential stresses acting on the south face are, respectively, σyy and σyx (see Fig. 4),

while on the west face we have σxx and σxy. Since the stresses depend on the space, the stresses on

the east and north faces will be different from those on the other two faces. Again, we adopt the

first-order Taylor expansion to express the stresses on the east and north faces as indicated in Fig. 4.

At this point, we are able to express the total surface force acting along x (or y), Fs,x (or Fs,y), by

Figure 4: Representation of the surface stresses acting on a control volume in a fluid in motion.

9



5 REPRESENTATION OF THE SURFACE STRESSES

summing the four horizontal (or vertical) contributions in Fig. 4, each multiplied by the area of the

control volume face to which it applies (remember that each face has extension of 1 unit length along

z). Starting from the west face, in the counter-clockwise direction:

Fs,x = −σxxdy − σyxdx+

(
σxx +

∂σxx
∂x

dx

)
dy +

(
σyx +

∂σyx
∂y

dy

)
dx =

=

(
∂σxx
∂x

+
∂σyx
∂y

)
dx dy, (23)

and:

Fs,y = −σxydy − σyydx+

(
σxy +

∂σxy
∂x

dx

)
dy +

(
σyy +

∂σyy
∂y

dy

)
dx =

=

(
∂σxy
∂x

+
∂σyy
∂y

)
dx dy, (24)

where the element volume is actually dx dy 1, so that the units of Fs,x and Fs,y are newton. It is

interesting to note that it is not the stresses, but their gradients, that cause a net force on the control

volume.

We can now replace Eqs. (22), (23), and (24) into Eq. (19) (with the manipulations in Eqs. (20)

and (21)):

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
dx dy =

∑
i

Fi,x = Fg,x + Fs,x =

[
ρgx +

(
∂σxx
∂x

+
∂σyx
∂y

)]
dx dy, (25a)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
dx dy =

∑
i

Fi,y = Fg,y + Fs,y =

[
ρgy +

(
∂σxy
∂x

+
∂σyy
∂y

)]
dx dy, (25b)

Note that the units are still newton (as the element has actual volume dx dy 1). We can now drop the

element volume as it appears at both right- and left-hand sides of the equations above, thus obtaining:

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= ρgx +

(
∂σxx
∂x

+
∂σyx
∂y

)
, (26a)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= ρgy +

(
∂σxy
∂x

+
∂σyy
∂y

)
, (26b)

which is a first form of the momentum equation. Note that the units of Eq. (26) are N/m3.

As anticipated at the end of Section 4, the surface stresses are the sum of pressure plus viscous

stresses, the latter due to the viscosity of the fluid and arising from the fluid motion (actually, from

the velocity gradients, as we will see). The pressure is a normal stress, as it is always orthogonal to

the control volume surface on which it acts, and it is a compression stress as it tends to shrink the

control volume. Therefore, we can rewrite the normal stresses acting on the control volume surfaces

using:

σxx = −p+ τxx, (27a)

σyy = −p+ τyy, (27b)

where p is the pressure (units: pascal, or N/m2), negative because it compresses the control volume,

while τxx and τyy (same units) indicate the shear stresses orthogonal to the control volume faces. The
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6 NEWTONIAN FLUIDS

tangential stresses are composed of viscous stresses only, as pressure does not act tangentially to the

control volume faces, and therefore:

σxy ≡ τxy, (28a)

σyx ≡ τyx, (28b)

which is merely a change of notation. Substituting Eqs. (27) and (28) in Eq. (26), we obtain:

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= ρgx −

∂p

∂x
+
∂τxx
∂x

+
∂τyx
∂y

, (29a)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= ρgy −

∂p

∂y
+
∂τxy
∂x

+
∂τyy
∂y

, (29b)

which represent the momentum equations (not yet the Navier-Stokes equations) and are valid for

any fluid in any general two-dimensional motion. The units are the same as Eq. (26), i.e. N/m3.

In order to develop further the equation above, we need to make some assumptions about how the

viscous stresses τ depend on the known quantitites.

Note that there are four forces appearing in Eq. (29), here with reference to Eq. (29a):

• ρ
(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
is the inertial force (here in the x direction) per unit volume of fluid.

• ρgx is the gravitational force (here in the x direction) per unit volume of fluid.

• −∂p
∂x

is the pressure force (here in the x direction) per unit volume of fluid.

• ∂τxx
∂x

+
∂τyx
∂y

is the force due to viscous stress (here in the x direction) per unit volume of fluid.

6 Newtonian fluids

In the module of Thermofluids 1, we have seen that (page 64 of TF1 notes) for a newtonian fluid

in a straight, parallel and laminar flow over a fixed, horizontal wall, the shear stress τ in a direction

parallel to the wall can be expressed as:

τ = µ
du

dy
(30)

where u is the horizontal velocity (parallel to the wall), y indicates a direction perpendicular to the

wall, and µ is the dynamic viscosity of the fluid (units: kg/(m · s), or Pa · s). The dynamic viscosity

is a property of the fluid and, in principle, it depends only on temperature and pressure, although

in this module we will simply consider it constant. By extending Eq. (30) to the general case of a

two-dimensional flow, the components of the viscous stress for a newtonian fluid can be expressed as:

τxx = 2µ
∂u

∂x
− 2

3
µ

(
∂u

∂x
+
∂v

∂y

)
, (31a)

τyy = 2µ
∂v

∂y
− 2

3
µ

(
∂u

∂x
+
∂v

∂y

)
, (31b)

τxy = τyx = µ

(
∂u

∂y
+
∂v

∂x

)
. (31c)
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6 NEWTONIAN FLUIDS

Equation (31) represents the constitutive equation for a newtonian fluid. We can now calculate

the partial derivatives of the viscous stresses, that will be useful to express the momentum equation

for a newtonian fluid (a bit lengthy, but it’s just derivations),

∂τxx
∂x

= 2µ
∂2u

∂x2
− 2

3
µ

(
∂2u

∂x2
+

∂2v

∂x∂y

)
, (32a)

∂τyx
∂y

= µ

(
∂2u

∂y2
+

∂2v

∂y∂x

)
, (32b)

∂τxy
∂x

= µ

(
∂2u

∂x∂y
+
∂2v

∂x2

)
, (32c)

∂τyy
∂y

= 2µ
∂2v

∂y2
− 2

3
µ

(
∂2u

∂y∂x
+
∂2v

∂y2

)
, (32d)

where the fluid viscosity has been assumed constant, so that:

∂τxx
∂x

+
∂τyx
∂y

= 2µ
∂2u

∂x2
− 2

3
µ

(
∂2u

∂x2
+

∂2v

∂x∂y

)
+ µ

(
∂2u

∂y2
+

∂2v

∂y∂x

)
=

= µ

(
∂2u

∂x2
+
∂2u

∂y2

)
+

1

3
µ
∂

∂x

(
∂u

∂x
+
∂v

∂y

)
, (33a)

∂τxy
∂x

+
∂τyy
∂y

= µ

(
∂2u

∂x∂y
+
∂2v

∂x2

)
+ 2µ

∂2v

∂y2
− 2

3
µ

(
∂2u

∂y∂x
+
∂2v

∂y2

)
=

= µ

(
∂2v

∂x2
+
∂2v

∂y2

)
+

1

3
µ
∂

∂y

(
∂u

∂x
+
∂v

∂y

)
. (33b)

Equation (33) can be used to develop further the right-hand side of Eq. (29), which will be done in

Section 7.

Incompressible flow

In the case of incompressible flow, for which Eq. (12) holds, the components of the viscous stresses for

a newtonian fluid, Eq. (31), simplify as:

τxx = 2µ
∂u

∂x
, (34a)

τyy = 2µ
∂v

∂y
, (34b)

τxy = τyx = µ

(
∂u

∂y
+
∂v

∂x

)
. (34c)

We can calculate the partial derivatives of the viscous stresses, that will be useful to express the

momentum equations for a newtonian fluid in incompressible flow,

∂τxx
∂x

= 2µ
∂2u

∂x2
, (35a)

∂τyx
∂y

= µ

(
∂2u

∂y2
+

∂2v

∂y∂x

)
, (35b)

∂τxy
∂x

= µ

(
∂2u

∂x∂y
+
∂2v

∂x2

)
, (35c)

∂τyy
∂y

= 2µ
∂2v

∂y2
, (35d)
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8 GENERAL FORM OF MASS AND MOMENTUM EQUATIONS

so that:

∂τxx
∂x

+
∂τyx
∂y

= 2µ
∂2u

∂x2
+ µ

(
∂2u

∂y2
+

∂2v

∂y∂x

)
= µ

(
∂2u

∂x2
+
∂2u

∂y2

)
+ µ

∂

∂x

(
��

���∂u

∂x
+
∂v

∂y

)
, (36a)

∂τxy
∂x

+
∂τyy
∂y

= µ

(
∂2u

∂x∂y
+
∂2v

∂x2

)
+ 2µ

∂2v

∂y2
= µ

(
∂2v

∂x2
+
∂2v

∂y2

)
+ µ

∂

∂y

(
��

���∂u

∂x
+
∂v

∂y

)
, (36b)

where the two last terms at the right-hand sides are zero because of continuity.

7 Navier-Stokes equations

Let’s start with the generic case of a newtonian fluid and compressible flow, for which the viscous

stresses can be expressed with Eq. (33). Replacing Eq. (33) into Eq. (29), we obtain the Navier-

Stokes equations for a newtonian fluid in two dimensions:

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= ρgx −

∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2

)
+

1

3
µ
∂

∂x

(
∂u

∂x
+
∂v

∂y

)
, (37a)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= ρgy −

∂p

∂y
+ µ

(
∂2v

∂x2
+
∂2v

∂y2

)
+

1

3
µ
∂

∂y

(
∂u

∂x
+
∂v

∂y

)
, (37b)

The units are N/m3. Now it is evident that, for a newtonian fluid, the viscous stresses arise from

the velocity gradients; if the velocity is constant, the viscous stresses are zero.

Incompressible flow

Replacing Eqs. (36) into Eq. (29), we obtain the Navier-Stokes equations for a newtonian fluid in

incompressible flow in two dimensions:

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= ρgx −

∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2

)
, (38a)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= ρgy −

∂p

∂y
+ µ

(
∂2v

∂x2
+
∂2v

∂y2

)
. (38b)

Again, note that there are four forces appearing in Eq. (38), here with reference to Eq. (38a):

• ρ
(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
is the inertial force (here in the x direction) per unit volume of fluid.

• ρgx is the gravitational force (here in the x direction) per unit volume of fluid.

• −∂p
∂x

is the pressure force (here in the x direction) per unit volume of fluid.

• µ
(
∂2u

∂x2
+
∂2u

∂y2

)
is the force due to viscous stress (here in the x direction) per unit volume of

fluid.

8 General form of mass and momentum equations

This section provides a summary of the equations seen in the previous sections.

13



8 GENERAL FORM OF MASS AND MOMENTUM EQUATIONS

Mass/momentum equations for a newtonian fluid in 2D

∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρv)

∂y
= 0, (39a)

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= ρgx −

∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2

)
+

1

3
µ
∂

∂x

(
∂u

∂x
+
∂v

∂y

)
, (39b)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= ρgy −

∂p

∂y
+ µ

(
∂2v

∂x2
+
∂2v

∂y2

)
+

1

3
µ
∂

∂y

(
∂u

∂x
+
∂v

∂y

)
, (39c)

Mass/momentum equations for a newtonian fluid in incompressible

flow in 2D

∂u

∂x
+
∂v

∂y
= 0, (40a)

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= ρgx −

∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2

)
, (40b)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= ρgy −

∂p

∂y
+ µ

(
∂2v

∂x2
+
∂2v

∂y2

)
. (40c)

Mass/momentum equations for a newtonian fluid in 3D

These were not derived before, but the derivation follows naturally by extending the 2D case to 3D.

∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z
= 0, (41a)

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= ρgx −

∂p

∂x
+

+ µ

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
+

1

3
µ
∂

∂x

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
,(41b)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
= ρgy −

∂p

∂y
+

+ µ

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
+

1

3
µ
∂

∂y

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
, (41c)

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
= ρgz −

∂p

∂z
+

+ µ

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
+

1

3
µ
∂

∂z

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
,(41d)
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8 GENERAL FORM OF MASS AND MOMENTUM EQUATIONS

Mass/momentum equations for a newtonian fluid in incompressible

flow in 3D

∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z
= 0, (42a)

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= ρgx −

∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
, (42b)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
= ρgy −

∂p

∂y
+ µ

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
, (42c)

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
= ρgz −

∂p

∂z
+ µ

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
. (42d)

Mass/momentum equations in compact notation

Finally, we show that we can recompact the equations using the del operator, ∇. This is very useful,

because it makes very clear the similarities among the various terms of the equations, and among their

components along the coordinate axes. Bear in mind the definition of the del operator, here for 3D

Cartesian orthogonal coordinates:

∇ =
∂

∂x
î +

∂

∂y
ĵ +

∂

∂z
k̂, (43)

therefore we can express the divergence of a vector field a = ax̂i + ay ĵ + azk̂ as:

∇ · a =
∂ax
∂x

+
∂ay
∂y

+
∂az
∂z

, (44)

and the laplacian of a scalar field b as:

∇2b =
∂2b

∂x2
+
∂2b

∂y2
+
∂2b

∂z2
. (45)

Using these operators, the mass conservation equation takes the same form in 2D and 3D:

∂ρ

∂t
+∇ · (ρV) = 0, (46)

and, if the flow is incompressible:

∇ ·V = 0. (47)

The Navier-Stokes equations in the general case of a compressible flow can be rewritten as:

ρ

(
∂u

∂t
+ V · ∇u

)
= ρgx −

∂p

∂x
+ µ∇2u+

1

3
µ
∂

∂x
(∇ ·V) , (48a)

ρ

(
∂v

∂t
+ V · ∇v

)
= ρgy −

∂p

∂y
+ µ∇2v +

1

3
µ
∂

∂y
(∇ ·V) , (48b)

ρ

(
∂w

∂t
+ V · ∇w

)
= ρgz −

∂p

∂z
+ µ∇2w +

1

3
µ
∂

∂z
(∇ ·V) , (48c)

and, in vectorial form:

ρ

(
∂V

∂t
+ V · ∇V

)
= ρg −∇p+ µ∇2V +

1

3
µ∇ (∇ ·V) . (49)
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9 SOLUTION OF THE NAVIER-STOKES EQUATIONS

For an incompressible flow,

ρ

(
∂u

∂t
+ V · ∇u

)
= ρgx −

∂p

∂x
+ µ∇2u, (50a)

ρ

(
∂v

∂t
+ V · ∇v

)
= ρgy −

∂p

∂y
+ µ∇2v, (50b)

ρ

(
∂w

∂t
+ V · ∇w

)
= ρgz −

∂p

∂z
+ µ∇2w, (50c)

and, in vectorial form:

ρ

(
∂V

∂t
+ V · ∇V

)
= ρg −∇p+ µ∇2V. (51)

Therefore, with an eye on Eq. (50), the similarity among the x, y, z components of the Navier-Stokes

equations is evident and this helps to memorise them, all the equations include:

• The temporal term of the inertial force, with the operator
∂

∂t
applied to the velocity component

(u, v, w) for which the equation is being written.

• The convective term of the inertial force, with the operator (V · ∇) applied to the velocity

component.

• The x, y or z component of the external body force, here the gravitational force.

• The pressure force, expressed by the partial derivative of the pressure in the direction along

which the equation refers to.

• The viscous force, with the operator ∇2 applied to the velocity component.

9 Solution of the Navier-Stokes equations

The mass and momentum equations represent a system of one scalar equation (mass conservation)

and one vectorial equation (momentum conservation). In the most general case (compressible flow),

there are two scalar unknowns, the pressure p and density ρ, and one vectorial unknown, the velocity

V. Therefore, one additional equation is needed to close the problem. This is usually an equation of

state that relates ρ to pressure and temperature, ρ = ρ(p, T ), such as the ideal gas law. However, note

that if the temperature varies in space and time, then we need another conservation equation for the

energy in order to have the same number of unknowns and equations. In the case of incompressible

flow, the density is a known constant and therefore the only unknowns are p and V, so that in this

case the mass and momentum equations are sufficient to describe the problem.

Boundary conditions

The mass and momentum equations constitute a system of partial differential equations with space

and time as independent variables, and therefore we need initial (at t = 0) and boundary conditions

in order to solve them. Figure 5 shows a representative example of the flow of a fluid between two

parallel plates, where the fluid enters from the left boundary and exits through the right boundary.

Typical initial and boundary conditions in engineering problems are:
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10 ANALYTICAL SOLUTION OF THE NAVIER-STOKES EQUATIONS

Figure 5: Schematic of the boundary conditions that apply to velocity and pressure fields for flow

between two parallel plates; the flow is from left to right.

• Initial conditions (t = 0): Velocity and pressure must be known functions of x, y, z. Note that if

the flow is steady, so that all the terms ∂/∂t are zero in the flow equations, no initial conditions

are necessary.

• Inlet/outlet : Velocity and pressure are usually known.

• Walls: Usual boundary conditions are no-through and no-slip. The no-through boundary condi-

tion requires that no fluid flows through the wall, and therefore the component of the velocity of

the fluid normal to the wall (say V⊥) must be equal to the normal velocity of the wall (say Vw,⊥),

V⊥ = Vw,⊥; if the wall is stationary, it follows that V⊥ = 0. The no-slip boundary condition

requires that, because of viscosity, the fluid element next to the wall must adhere to it, and

therefore the component of the velocity of the fluid parallel to the wall (say V‖) must be equal

to the parallel velocity of the wall (say Vw,‖), V‖ = Vw,‖; if the wall is stationary, it follows that

V‖ = 0.

10 Analytical solution of the Navier-Stokes equations

The Navier-Stokes equations can be solved in closed form only for a very few simple configurations,

below we provide two of such examples.

Laminar flow between two parallel plates

We consider the incompressible, steady state flow of a newtonian fluid between two infinitely extended

(stationary) parallel plates, see the schematic in Fig. 6(a). The flow is assumed laminar, and therefore

the Reynolds number of the flow, Re = ρumean`/µ, with umean being the average fluid velocity on the

cross-section and ` = 4h a characteristic length of the cross-section (twice the distance between the

parallel plates), is below 2300. Because the plates are infinitely extended in the depth (z) direction,

the flow can be regarded as two-dimensional (with w = 0). Additionally, we assume that the flow is

driven by a constant streamwise pressure gradient ∂p/∂x, and that the flow is essentially axial, with

u = u(x, y) 6= 0, but v = 0; these assumptions have been observed to be valid when considering a

region of the channel far from the entrance. The gravitational force can be neglected. The scope of

the exercise is to derive the velocity profile on the channel cross-section.
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10 ANALYTICAL SOLUTION OF THE NAVIER-STOKES EQUATIONS

(a) (b)

Figure 6: (a) Schematic of the channel geometry and reference frame for flow between two parallel

plates and (b) resulting parabolic velocity profile.

Let’s start be recalling the continuity equation in the case of an incompressible flow (2D):

∂u

∂x
+
∂v

∂y
= 0, (52)

but v = 0 as stated in the text of the exercise, and thus it follows from the equation above that:

∂u

∂x
= 0, (53)

and therefore u is a function of y only, u = u(y). From the Navier-Stokes equations for a newtonian

fluid in incompressible flow, the x−momentum equation writes as:

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2

)
, (54)

where the first term at the left-hand side is zero because the flow is steady-state, the second term is

zero because of continuity, the third term is zero because v = 0, and the second term at the right-hand

side is zero because u 6= u(x), so that the equation above simplifies as:

µ
d2u

dy2
=
∂p

∂x
. (55)

Note that the partial derivative of u with respect to y becomes an ordinary derivative because u

depends only on y. The y−momentum equation writes as:

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ µ

(
∂2v

∂x2
+
∂2v

∂y2

)
, (56)

however v = 0 and therefore all the terms but the pressure gradient are zero:

∂p

∂y
= 0, (57)

from which it follows that p is a function of x only, p = p(x), and thus it is constant on the cross-section

(as it is not a function of y). This allows us to rewrite the partial derivative of the pressure in Eq. (55)

as an ordinary derivative:

µ
d2u

dy2
=
dp

dx
, (58)
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10 ANALYTICAL SOLUTION OF THE NAVIER-STOKES EQUATIONS

where we know from the text of the exercise that dp/dx is constant. Equation (58) is a second-order

ordinary differential equation that can be easily solved with two boundary conditions. By applying

no-slip conditions at the channel walls, we know that:

u(y = ±h) = 0. (59)

Integrating twice Eq. (58) with respect to y we obtain the velocity profile on the cross-section:

u(y) =
1

µ

dp

dx

y2

2
+ C1y + C2, (60)

and, imposing the boundary conditions at the walls:

u(y = +h) = 0⇒ 1

µ

dp

dx

h2

2
+ C1h+ C2 = 0, (61a)

u(y = −h) = 0⇒ 1

µ

dp

dx

h2

2
− C1h+ C2 = 0, (61b)

which can be manipulated to extract the integration constants:

C1 = 0, C2 = −dp
dx

h2

2µ
, (62)

so that the velocity profile is now completely known:

u(y) = −dp
dx

h2

2µ

(
1− y2

h2

)
. (63)

The velocity profile is parabolic, with u = 0 at the walls owing to the no-slip condition, and maximum

velocity at the centre (y = 0):

umax = u(y = 0) = −dp
dx

h2

2µ
, (64)

see the sketch in Fig. 6(b). Note that the pressure decreases along x due to the wall shear, and hence

dp/dx < 0, such that u > 0.

Now that we have the velocity profile, we can extract some useful quantities, for example the

volumetric flow rate Q̇:

Q̇ =

+h∫
−h

u(y)dy = −dp
dx

2h3

3µ
, (65)

and the average flow velocity umean:

umean =
1

2h

+h∫
−h

u(y)dy =
Q̇

2h
= −dp

dx

h2

3µ
, (66)

where 2h is the distance between the two plates. It follows that:

umax =
3

2
umean, (67)

and thus we can rewrite the velocity profile as:

u(y) =
3

2
umean

(
1− y2

h2

)
. (68)
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Figure 7: Schematic of the channel geometry and reference frame for flow in a circular pipe.

Note that the units of the volumetric flow rate Q̇ should be m3/s, although from Eq. (65) we find

m2/s because we are not considering the extension of the channel along z. From the engineering point

of view, it is useful to relate the total pressure drop for a channel of length L to the average flow rate.

Separating the differentials in Eq. (65)

dp = −3µQ̇

2h3
dx⇒ ∆p = −

L∫
0

dp = −
L∫

0

−3µQ̇

2h3
dx =

3µQ̇L

2h3
, (69)

and, in terms of mean fluid velocity:

∆p =
3µumeanL

h2
. (70)

Always double-check the units to make sure that calculations are correct, the pressure drop ∆p is

always in pascal.

Laminar flow in a circular pipe

Now we repeat the derivation of the velocity profile, but for a circular pipe geometry, see the schematic

in Fig. 7. We consider the flow laminar, incompressible and steady-state, the fluid newtonian. It is con-

venient to use a cylindrical reference frame of coordinates r, θ, z, with velocity components ur, uθ, uz.

We assume that the flow is driven by a constant streamwise pressure gradient ∂p/∂z, and that the

flow is essentially axial, with uz 6= 0, but ur = uθ = 0; we also assume axial symmetry, i.e. ∂/∂θ = 0,

so that velocity and pressure are independent of θ. These assumptions have been observed to be

valid when considering a region of the channel far from the entrance. The gravitational force can be

neglected. The scope of the exercise is to derive the velocity profile on the channel cross-section.

We need now to write down the mass and momentum equations for cylindrical coordinates. Al-

though the vectorial form of the mass and momentum equations for incompressible flow and newtonian

fluid, Eqs. (47) and (51), hold independently of the coordinate system, the del operator in cylindrical

coordinates writes differently:

∇ =
∂

∂r
r̂ +

1

r

∂

∂θ
θ̂ +

∂

∂z
ẑ, (71)

and hence also the divergence operator, laplacian, etc., write differently. These are not reported here,

but the interested reader can take a look at the following Wikipedia page. The mass and momentum
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equations for incompressible flow and newtonian fluid in cylindrical coordinates, for axial symmetry

(∂/∂θ = 0 and uθ = 0), write as follows:

1

r

∂(rur)

∂r
+
∂uz
∂z

= 0, (72a)

ρ

(
∂ur
∂t

+ ur
∂ur
∂r

+ uz
∂ur
∂z

)
= −∂p

∂r
+ µ

[
1

r

∂

∂r

(
r
∂ur
∂r

)
− ur
r2

+
∂2ur
∂z2

]
, (72b)

ρ

(
∂uz
∂t

+ ur
∂uz
∂r

+ uz
∂uz
∂z

)
= −∂p

∂z
+ µ

[
1

r

∂

∂r

(
r
∂uz
∂r

)
+
∂2uz
∂z2

]
. (72c)

From the continuity equation, Eq. (72a), we can eliminate the first term as the exercise suggests that

ur = 0, therefore:

∂uz
∂z

= 0, (73)

and therefore uz is a function of r only, uz = uz(r). From the r−momentum equation, Eq. (72b), all

the terms are zero because ur = 0 except for the pressure gradient, and thus it follows that:

∂p

∂r
= 0, (74)

pressure is a function of z only, p = p(z), and thus it is constant on the cross-section (as it is not a

function of r). From the z−momentum equation, Eq. (72c), the first term at the left-hand side is zero

because the flow is steady, the second term is zero because ur = 0, and the third term is zero because of

continuity; at the right-hand side, the partial derivative of the pressure becomes an ordinary derivative

because of Eq. (74), and the last term is zero because uz 6= uz(z). As such, Eq. (72c) simplifies as:

µ

r

d

dr

(
r
duz
dr

)
=
dp

dz
, (75)

where we know from the text of the exercise that dp/dz is constant. Note that the derivative of uz

with respect to r has become an ordinary derivative as uz depends only on r. Equation (75) is a

second-order ordinary differential equation; multiplying the two sides by r/µ and integrating once

with respect to r, we obtain:

r
duz
dr

=
dp

dz

r2

2µ
+ C1, (76)

dividing everything by r and integrating a second time, we obtain:

uz(r) =
dp

dz

r2

4µ
+ C1 ln r + C2. (77)

Now we need to impose the boundary conditions to obtain C1 and C2. The no-slip condition at the

wall yields:

uz(r = R) = 0⇒ dp

dz

R2

4µ
+ C1 lnR+ C2 = 0, (78)

where R is the radius of the pipe. The second boundary condition is obtained by requiring that the

profile is finite at r = 0, where the logarithm would make the solution diverge to infinite, so that C1

must be zero. This yields:

C1 = 0, C2 = −dp
dz

R2

4µ
, (79)
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from which the velocity profile is fully determined:

uz(r) = −dp
dz

R2

4µ

(
1− r2

R2

)
, (80)

which is parabolic in r and is known as the Poiseuille velocity profile. Note that uz > 0 because

dp/dz < 0, as explained in the previous exercise.

From the known velocity profile, we can now derive some useful quantities, for instance the maxi-

mum velocity at the pipe centre (r = 0):

uz,max = −dp
dz

R2

4µ
, (81)

the volumetric flow rate in the pipe (units: m3/s):

Q̇ =

R∫
0

uz(r)2πr dr = −dp
dz

πR4

8µ
, (82)

and the average flow velocity in the pipe:

uz,mean =
1

πR2

R∫
0

uz(r)2πr dr =
Q̇

πR2
= −dp

dz

R2

8µ
, (83)

from which it follows that uz,max = 2uz,mean. As done for the previous exercise, it is useful to relate

the pressure drop in a pipe of length L to the volumetric flow rate. Separating the differentials in

Eq. (82) and integrating along z, from 0 to L:

∆p =
8µQ̇L

πR4
, (84)

note that the pressure drop increases dramatically as the radius of the pipe is reduced, due to the

∆p ∼ 1/R4 dependence.
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