Chapter 1.5

 Steam wetness – or how a system can have both liquid and vapour

Steam wetness

- Can the same entropy as the previous example be achieved when pressure is 1 bar?
- Look at the 1 bar line on p.6 look on the left column for the saturated state:

p/[bar] $(T_s/[°C])$	Sat state	$\frac{T}{[°C]}$	50	100	150	200	250	300	400	500
0	u = h - RT at $p = 0$	v u h s	2446 2595	2517 2689	2589 2784	2662 2880	2737 2978	2812 3077	2969 3280	3132 3489
).006112 (0.01)	v_{g} 206.1 u_{g} 2375 h_{g} 2501 s_{g} 9.155	v u h s	243.9 2446 2595 9.468	281.7 2517 2689 9.739	319.5 2589 2784 9.978	357.3 2662 2880 10.193	395.0 2737 2978 10.390	432.8 2812 3077 10.571	508.3 2969 3280 10.897	583.8 3132 3489 11.18
0.01 (7.0)	v_{g} 129.2 u_{g} 2385 h_{g} 2514 s_{g} 8.974	v u h s	149.1 2446 2595 9.241	172.2 2517 2689 9.512	195.3 2589 2784 9.751	218.4 2662 2880 9.966	241.4 2737 2978 10.163	264.5 2812 3077 10.344	310.7 2969 3280 10.670	356.8 3132 3489 10.96
		15 - 3 - 7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1				10 11	10.00		10.10	ma 0.

Steam wetness continued

- No, not possible to be superheated at 7.159 kJ·kg⁻¹K⁻¹ at 1 bar;
- But that does not mean it is not possible to be at 7.159 kJ·kg⁻¹K⁻¹ at 1 bar!
- The condition that makes it possible for the entropy to be less, is condensation of some of it;
- A proportion, x (i.e. m_{vap}/m_{total}), remains as sat steam, and a proportion (1-x) i.e. (i.e. m_{vap}/m_{total}) becomes wet as it condenses into droplets.

For the condition stated

- The actual entropy must be a combination of the wet and dry entropy;
- That is, s = 7.159 kJ/kgK, must be x parts the dry s_g and (1-x) parts the wet s_f;
- $s = xs_g + (1-x)s_f;$
- $7.159 = x(7.359) + (1-x)s_f;$
- s_f is obtained from the saturated data on p.4;
- s_f = 1.303 kJ/kgK a much smaller value than the dry stem;
- It is smaller because it is more organised in structure and has less chaos.

Entropy of wet steam is:

- To finish: 7.159 = x(7.359) + (1-x)1.303;
- Therefore x = 0.967;
- This is quite dry.

See the video of the high pressure steam safety release valve 'blowing off'. Immediately at the exit of the tube, the steam is entirely transparent – it is superheated and dry in that region, but then as the steam temperature falls, the wetness increases and the droplets make the cloudy jet.

Video showing superheated steam

https://youtu.be/Bvt6n5fKuKw