

Department of Mechanical, Materials and Manufacturing Engineering

Electromechanical Devices MMME2051EMD

DC Permanent Magnet Motor

Torque, $T = K I_a$ Back-EMF, $E_b = K \omega$ Supply voltage, $V = E_b + I_a R_a$

Induction Motors

Slip,
$$s = \frac{n_s - n}{n_s}$$
 where $n_s = \frac{60f}{p}$

where f = frequency in Hz, p = no. of pole pairs, n is running speed in rev min⁻¹ and n_s is synchronous speed in rev min⁻¹

Torque $T = \frac{3p}{2\pi f} \cdot \frac{V^2 as}{X_R (a^2 + s^2)}$ Newton metres, where $a = \frac{R_R}{X_R}$, p = no. of pairs of poles

Mechanical output power, $P_m = T\left(\frac{2\pi f}{p}\right)(1-s)$ Watts

Transformers

Ideal transformer formulae (assuming zero resistance and zero core reluctance)

$$\frac{N_1}{N_2} = \frac{V_1}{V_2} = \frac{I_2}{I_1}$$
$$Z_{\text{eq}} = \left(\frac{N_1}{N_2}\right)^2 Z_2 \quad \text{Ohms}$$

AC Circuits

Resistance and inductance in series: Complex Impedance

In Cartesian form: $Z = (R + j\omega L)$ Ohms

in polar form:

$$Z = \sqrt{R^2 + \omega^2 L^2} \quad \angle \left(+ \phi_L \right) \text{Ohms} \qquad \text{where} \qquad \phi_L = tan^{-1} \left(\frac{\omega L}{R} \right)$$

Modulus:

 $|Z| = \sqrt{R^2 + \omega^2 L^2}$ Ohms

Resistance and capacitance in series: Complex Impedance

In Cartesian form: $Z = R - j \left(\frac{1}{\omega C}\right) \text{ Ohms}$

in polar form:

$$Z = \sqrt{R^2 + \left(\frac{1}{\omega C}\right)^2} \angle (-\phi_c) \text{ Ohms} \qquad \text{where } \phi_c = \tan^{-1} \left[\frac{1}{\omega CR}\right]$$

Modulus:

$$|Z| = \sqrt{R^2 + \left(\frac{1}{\omega C}\right)^2}$$
 Ohms

Power dissipation

Average power, $P = |V||I| \cos \phi$ Watts

Power dissipation in a resistor, $P = |I|^2 R$ Watts