

University of Nottingham UK | CHINA | MALAYSIA

LECTURE 2A

Simple Electrical Circuits

Electromechanical Devices MMME2051

Module Convenor – Surojit Sen

Illustrations are All Creative Commons if mentioned otherwise on the illustration

- **Basic Concepts (& Recap)**
	- Charge, current, voltage
	- Ohm's/Kirchhoff's Laws
	- Power & Energy
	- Measurement of Voltage & Current
	- Electrical symbols & notations
	- Solution of a simple electrical circuit using just Ohm's and Kirchhoff's Laws
- Electrical circuits
	- **Series** & **Parallel**
	- **Combination** of series & parallel
	- **Example circuits** (to be discussed in upcoming seminar)
- Further Reading

Engineering System

Suspension & **chasses Mechanical Engineering**

Credit: pinterest.com

Vehicle Control Unit (VCU) that sends signals/commands to drive/stop the car **Electronic Engineering**

Code written to program the VCU **Computer/Software Engineering**

Motor that converts electrical power from battery to mechanical motion **Electromechanical Engineering**

Battery that supplies power to drive the motor **Electrical Engineering**

Power Converter that controls the flow of electrical power between battery and motor **Power Electronics**

Electric Charge

Some important characteristics of electric charge

- Charge can be positive or negative
- Nature's basic carrier of negative charge is the **electron**
- Nature's basic carrier of positive charge is the **proton**
- If an object has a deficit of electrons, it will exhibit a **net positive charge**
- If an object has a surplus of electrons, it will exhibit a **net negative charge**

Electric Current

In a conductor, there are many free electrons and they move randomly

If the free electrons move consistently, a electron flow will be seen

Electric Potential (Voltage)

Conductor

Easily allows current to flow through it

 $R\rightarrow 0\Omega$

All metals are conductors

Insulator

Strongly impedes flow of current through it

 $R\rightarrow \infty \Omega$

Plastic, rubber, wood etc.

Kirchhoff's Current Law

Algebraic sum of current entering a node is zero

$$
\sum I_i = 0
$$

Kirchhoff's Voltage Law

Algebraic sum of voltages around a closed loop is zero

Basic concepts in electrical engineering

Reactive elements store energy, and responds/behaves according to the **present AND the past!**

Inductor **opposes sudden changes** in **current**

By **inducing** as much **voltage** is theoretically needed to **keep the current steady**

Capacitor **opposes sudden changes** in **voltage**

 dV

 \boldsymbol{dt}

By **generating** as much **current** is theoretically needed to **keep the voltage steady**

A physical device that is added to an electrical circuit (that you want to observe) **without affecting** the working of the circuit

Voltmeter is added in **parallel to the element** (or group of elements) to measure the voltage across it

Its internal impedance is **very high** $R \rightarrow \infty \Omega$

Ammeter is added in **series to the element** (or group of elements) to measure the current through it

> Its internal impedance is **very low** $R\rightarrow 0.2$

A physical device that is added to an electrical circuit (that you want to observe) **without affecting** the working of the circuit

F

University of

Find out the current and voltage of every resistor

- **Step 1 – Identify all the loops in the circuit**
- **Step 2 – Assign a "loop current" variable**
- **Step 3 – Identify "branch current" values (apply KCL)**
- **Step 4 – Apply KVL to each loop**
- **Step 5 – Apply Ohm's Law**

University of Nottingham UK | CHINA | MALAYSIA

- **Step 1 – Identify all the loops in the circuit**
- **Step 2 – Assign a "loop current" variable**
- **Step 3 – Identify "branch current" values (apply KCL)**
- **Step 4 – Apply KVL to each loop**
- **Step 5 – Apply Ohm's Law**

University of Nottingham UK | CHINA | MALAYSIA

- **Step 1 – Identify all the loops in the circuit**
- **Step 2 – Assign a "loop current" variable**
- **Step 3 – Identify "branch current" values (apply KCL)**
- **Step 4 – Apply KVL to each loop**
- **Step 5 – Apply Ohm's Law**

University of Nottingham UK | CHINA | MALAYSIA

- **Step 1 – Identify all the loops in the circuit**
- **Step 2 – Assign a "loop current" variable**
- **Step 3 – Identify "branch current" values (apply KCL)**
- **Step 4 – Apply KVL to each loop**
- **Step 5 – Apply Ohm's Law**

University of Nottingham UK | CHINA | MALAYSIA

Loop 1 KVL (node A origin): $10 - 2 - V_1 - V_2 = 0$

Loop 2 KVL (node B origin): $V_2 - V_4 = 0$

- **Step 1 – Identify all the loops in the circuit**
- **Step 2 – Assign a "loop current" variable**
- **Step 3 – Identify "branch current" values (apply KCL)**
- **Step 4 – Apply KVL to each loop**
- **Step 5 – Apply Ohm's Law**
- **Step 6 – Solve the linear system of equations – you can solve for unknowns with equations**

Loop 3 KVL (node C origin): $V_4 - V_3 - V_5 = 0$

Universitu of Nottingham LIK | CHINA | MAI AYSIA

Application of Kirchhoff's Law

- **Step 1 – Identify all the loops in the circuit**
- **Step 2 – Assign a "loop current" variable**
- **Step 3 – Identify "branch current" values (apply KCL)**
- **Step 4 – Apply KVL to each loop**
- **Step 5 – Apply Ohm's Law**
- **Step 6 – Solve the linear system of equations – you can solve for unknowns with equations**

Loop 1 KVL (node A origin): $10 - 2 - V_1 - V_2 = 0$ $8 - I_1 R_1 - (I_1 - I_2) R_2 = 0$ $I_1 (R_1 + R_2) - I_2 R_2 = 8$ $I_1(5+1) - I_21 = 8$ $6I_1 - I_2 = 8$

Loop 2 KVL (node B origin): $V_2 - V_4 = 0$ $(I_1 - I_2)R_2 - (I_2 - I_3)R_4 = 0$ $I_1 R_2 - I_2 (R_2 + R_4) + I_3 R_4 = 0$ $I_1 1 - I_2 (1 + 2) + I_3 2 = 0$ $I_1 - 3I_2 + 2I_3 = 0$

Loop 3 KVL (node C origin): $V_4 - V_3 - V_5 = 0$ $(I_2 - I_3)R_4 - I_3R_3 - I_3R_5 = 0$ $I_2 R_4 - I_3 (R_3 + R_4 + R_5) = 0$ $I_2 2 - I_3(1 + 2 + 2) = 0$ $2I_2 - 5I_3 = 0$

University of Nottingham UK | CHINA | MALAYSIA

Application of Kirchhoff's Law

- **Step 1 – Identify all the loops in the circuit**
- **Step 2 – Assign a "loop current" variable**
- **Step 3 – Identify "branch current" values (apply KCL)**
- **Step 4 – Apply KVL to each loop**
- **Step 5 – Apply Ohm's Law**
- **Step 6 – Solve the linear system of equations – you can solve for** *n* **unknowns with** *n* **equations**

$$
6I_1 - I_2 = 8 \nI_1 - 3I_2 + 2I_3 = 0 \n2I_2 - 5I_3 = 0
$$
\n
$$
Eq1 \nEq2 \nEq3
$$

Apply
$$
3(Eq1) - (Eq2)
$$
:
\n $18I_1 - 3I_2 - I_1 + 3I_2 - 2I_3 = 24$
\n $17I_1 - 2I_3 = 24$ $Eq4$

Apply
$$
(Eq3) + 2(Eq1)
$$
:
\n $2I_2 - 5I_3 + 12I_1 - 2I_2 = 16$
\n $12I_1 - 5I_3 = 16$ $Eq5$

Apply
$$
12(Eq4) - 17(Eq5)
$$
:
\n $204I_1 - 24I_3 - 204I_1 + 85I_3 = 288 - 272$
\n $61I_3 = 16$
\n $I_3 = 0.262A$ $Eq6$

Use
$$
(Eq6)
$$
 in $(Eq3)$

$$
I_2 = \frac{5I_3}{2} = \frac{5(0.262)}{2} = 0.656A
$$
 Eq7

Use
$$
(Eq7)
$$
 in $(Eq1)$

$$
I_1 = \frac{8 + I_2}{6} = \frac{8 + 0.656}{6} = 1.443A
$$
Eq8

- **Basic Concepts (& Recap)**
	- Charge, current, voltage
	- Ohm's/Kirchhoff's Laws
	- Power & Energy
	- Measurement of Voltage & Current
	- Electrical symbols & notations
	- Solution of a simple electrical circuit using just Ohm's and Kirchhoff's Laws
- Electrical circuits
	- **Series** & **Parallel**
	- **Combination** of series & parallel
	- **Example circuits** (to be discussed in upcoming seminar)
- Further Reading

When two (or more) elements are connected together head-to-toe

Same current flows through each element

 $I = I_1 = I_2 = I_3$

Voltage gets split between elements

 $V = V_1 + V_2 + V_3$

More resistors in series, the harder it is for voltage source to push the current through

Resistance value adds up

 $R = R_1 + R_2 + R_3$

When two (or more) elements are connected together head-to-toe

Same current flows through each element

 $I = I_1 = I_2 = I_3$

Voltage gets split between elements

 $V = V_1 + V_2 + V_3$

More inductors in series, the harder it is for current to change rapidly

Inductance value adds up

 $L = L_1 + L_2 + L_3$

When two (or more) elements are connected together head-to-toe

Same current flows through each element

 $I = I_1 = I_2 = I_3$

Voltage gets split between elements

 $V = V_1 + V_2 + V_3$

More capacitors in series, the easier it is for voltage to change rapidly

Apply KVL: in series, voltage gets divided, so each capacitor needs to oppose change of only part of the total voltage change

Reciprocal of capacitance value adds up

$$
\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}
$$

University of Parallel Circuit Nottingham K | CHINA | MAI AYSIA

> **When two (or more) elements are connected together head-to-head**

Same current flows through each element

 $I = I_1 + I_2 + I_3$

Voltage gets split between elements

 $V = V_1 = V_2 = V_3$

More resistors in parallel, more "effective paths" for electrons to pass through

$$
\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}
$$

University of Parallel Circuit Nottingham IK | CHINA | MAI AYSIA

> **When two (or more) elements are connected together head-to-head**

Same current flows through each element

 $I = I_1 + I_2 + I_3$

Voltage gets split between elements

 $V = V_1 = V_2 = V_3$

More inductors in parallel, easier it is for current to change rapidly

Apply KCL: in parallel, current gets divided, so each inductor needs to oppose change of only part of the total current change

Reciprocal of inductance value adds up

 $\mathbf{1}$ \boldsymbol{L} = $\mathbf{1}$ $\bm{L_1}$ $+$ $\mathbf{1}$ L_2 $+$ $\mathbf{1}$ $\boldsymbol{L_3}$ **University of Parallel Circuit Nottingham** IK | CHINA | MAI AYSIA

> **When two (or more) elements are connected together head-to-head**

Same current flows through each element

 $I = I_1 + I_2 + I_3$

Voltage gets split between elements

 $V = V_1 = V_2 = V_3$

More capacitors in parallel, harder it is for voltage to change rapidly

Reciprocal of inductance value adds up

 $C = C_1 + C_2 + C_3$

Series

When two (or more) elements are connected together head-to-toe

Parallel

When two (or more) elements are connected head-to-head and toeto-toe

Series-Parallel

Combination of the both

Same current flows through each element

Voltage gets split: $V = V_1 + V_2 + V_3$

Same voltage across each element

Current gets split: $I = I_1 + I_2 + I_3$

Break the circuit up into series and parallel and solve individually

Can you prove these formulae using Kirchhoff's and Ohm's Laws?

 R_1 5Ω R_2 10Ω R_3 $5Ω$ V_{1} V_{2} V_3 $\int 10V$ \bm{I}

 L_1 $1H$ L_2 $5H$ L_3 $2H$ V_{1} V_{2} V_3 Γ_{10V} \boldsymbol{I}

- What is the values of V_1 , V_2 , V_3 ?
- What is the value of I ?
- Prove that the set of three inductors can be equivalently replaced with an inductor with inductance of 8H
- Prove that the set of four capacitors can be equivalently replaced with a capacitor with capacitance of 0.805

- **Basic Concepts (& Recap)**
	- Charge, current, voltage
	- Ohm's/Kirchhoff's Laws
	- Power & Energy
	- Measurement of Voltage & Current
	- Electrical symbols & notations
	- Solution of a simple electrical circuit using just Ohm's and Kirchhoff's Laws
- Electrical circuits
	- **Series** & **Parallel**
	- **Combination** of series & parallel
	- **Example circuits** (to be discussed in upcoming seminar)
- Further Reading

University of
Nottingham UK | CHINA | MALAYSIA

Further Reading

- Almost all motors, actuators etc. have (unwanted) inductance due to their coils of wire (windings)
- Capacitors are widely used for filtering and smoothing signals, and creating phase shifts e.g. to start some kinds of motor

• A solenoid actuator has an inductance of $50mH$. 0.01s after connecting it to a $10V$ dc supply, what value of current is flowing? Ignore the resistance of the actuator.

 $\Delta t = 200 \times 0.01 = 2A$

$$
V = L \frac{dI}{dt}
$$

$$
\frac{dI}{dt} = \frac{V}{L} = \frac{10}{50 \times 10^{-3}}
$$

$$
= 200 A/s
$$

So,

 $\Delta I \approx$

 dI

 dt

Example of Inductor calculation – more realistic problem

University of Nottingham UK | CHINA | MALAYSIA

$$
V_{batt} = IR + L\frac{dI}{dt}
$$

This is a differential equation, so we need to integrate this

$$
V_{batt} dt = I R dt + L dI
$$

$$
V_{batt} \int dt = R \int I. dt + L \int dl
$$

After some complex calculus

$$
I(t) = \frac{V_{batt}}{R} (1 - e^{-\frac{R}{L}t})
$$

Example of Capacitor calculation

- A $10mF$ capacitor is used to smooth the output of a rectified $50 Hz$ power supply.
- Effectively, the capacitor is charged by a voltage peak to $24V$ every $0.01s$
- \bullet 1.4 is drawn from the power supply
- By what amount does the output voltage drop between charging peaks?
- What is mean voltage?
- Specifically, what is the voltage change Δv in 0.01?
- What is $V_{average}$?

Universitu of Nottingham CHINA | MAI AYSIA

Example of Capacitor calculation

$$
I = C \frac{dV}{dt} = -1A
$$

(current flowing out of cap so - ve)

University of Nottingham UK | CHINA | MALAYSIA

$$
\text{so} \frac{dV}{dt} = \frac{I}{C} = \frac{-1}{10000 \times 10^{-6}} = -10^2 \text{ Vs}^{-1}
$$

So
$$
\Delta v = \frac{dV}{dt} \Delta t = -10^2 \times 0.01 = -1V
$$

Mean voltage is therefore $24 + (24 - 1)$ 2 $= 23.5V$

• A capacitor of value $1000 \mu F$ is connected to a 12*V* battery via a $10000Ω$ resistor. At what rate does the capacitor voltage increase initially?

Another example of Capacitor calculation

Initially: voltage across capacitor $= 0$

So

43

University of Nottingham UK | CHINA | MALAYSIA

$$
V_{batt} - IR - 0 = 0
$$

$$
I = \frac{V_{batt}}{R}
$$

But

$$
I = \frac{dQ}{dt} = C \frac{dV_{cap}}{dt}
$$

So

$$
\frac{dV_{cap}}{dt} = \frac{V_{batt}}{RC} = \frac{12}{10000 \times 1000 \times 10^{-6}} = 1.2 V s^{-1}
$$

Another example of Capacitor calculation

University of Nottingham UK | CHINA | MALAYSIA

