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Learning Outcomes

• Fundamentals of Alternating Current – or AC

• DC v AC circuit study – waveforms a function of time!

• Sinusoidal waveform – voltage & current

• Complex Numbers

• AC circuits

• Phasor study – simple way to solve time-varying circuits

• Resistor, Inductor, Capacitor in phasor form - CIVIL

• Reactance – Purely reactive circuits (just inductor/capacitor)

• Impedance – Resistance & Reactance

• Power in AC circuits

• Active v Reactive v Apparent Power

• Power Factor

• Resonance



DC v AC

Direct Current
Current flowing in only one direction

e.g., battery

Alternating Current
Direction of current flow changes periodically

e.g., generator

Abbreviations AC and DC are often used to mean simply alternating and 

direct, i.e., reference to just current dropped

e.g., AC voltage, DC current etc. 



Waveform

Representation of any physical variable as a function of time on a graph

(We would discuss only electrical variables like voltage and current)

Magnitude (y-axis) and time (x-axis)

Sine Wave (or 

sinusoid) is the 

most interesting 

– we would be 

studying this

Other waveforms like 

triangular, sawtooth, 

and square are 

abundantly used in 

electrical engineering –

they can all be 

represented as a sum 

of infinite number of 

sinusoids (check out 

Fourier Series!)



Waveform

Why is Sine wave interesting?

• Occurs in nature

• Wind, sound and light waves 

are sinusoidal

Fourier Series – Every waveform is 

made up of sinusoids 

Motors & Generators translate 

rotation and voltage – projection of 

a rotating object is a sinusoid!



Sinusoid

Sinusoid is a mathematical curve defined in 

terms of the sine trigonometric function

Sine and Cosine are both examples of 

sinusoid

Cosine function is simply the Sine function, 

but 𝟗𝟎° advanced

We will use the Cosine function to 

represent variables

𝑦 𝑡 = 𝐴 cos(𝜔𝑡 + 𝜙)

𝑥1 𝑡 = cos 𝑡 𝑥2 𝑡 = sin 𝑡

Variable as 

function of time Amplitude

Frequency

Phase 

offset

Phase 

Angle



Sinusoid – Phase Angle



Sinusoid – Phase Angle

𝒙𝒄𝒐𝒔 = 𝑨𝐜𝐨𝐬(𝜽)
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Sinusoid – Phase Angle

𝒙𝒄𝒐𝒔 = 𝑨𝐜𝐨𝐬(𝜽)

0°

45°

90°

135°

180°

225°

270°

315°

0

𝜋

4

𝜋

2

3𝜋

4

𝜋

5𝜋

4

3𝜋

2

7𝜋

4 0 𝜋

4

𝜋

2
3𝜋

4

𝜋 5𝜋

4

3𝜋

2

7𝜋

4

2𝜋

0° 45° 90° 135° 180° 225° 270° 315° 360°

𝜽

𝜽

𝒙𝒔𝒊𝒏

𝒙𝒄𝒐𝒔

𝒙𝒔𝒊𝒏

𝑨

𝒙𝒔𝒊𝒏 = 𝑨𝐬𝐢𝐧(𝜽)

𝒙𝒄𝒐𝒔

Notice 

this is a 

negative 

value!



Sinusoid – Phase Angle

𝒙𝒄𝒐𝒔 = 𝑨𝐜𝐨𝐬(𝜽)
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Sinusoid - Amplitude

Maximum magnitude of the variable

𝑣

𝑡

AmplitudePeak-to-peak

𝑣

𝑡

𝑥1 = 𝐴 cos𝜔𝑡

𝑥2 = 𝐵 cos𝜔𝑡

𝑥3 = 𝐶 cos𝜔𝑡

𝐴
𝐵

𝐶



Sinusoid - Frequency or Angular Speed

𝑣

𝑡

Δ𝑇

Indicates how fast is the variable changing

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝐻𝑧) = 𝑓 =
1

Δ𝑇

𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑆𝑝𝑒𝑒𝑑(
𝑟𝑎𝑑

𝑠
) = 𝜔 = 2𝜋𝑓 =

2𝜋

Δ𝑇

Time taken (in 𝑠) to 

perform one period, or 

revolution 𝑣

𝑡

𝑥1 = 𝐴 cos
2𝜋

Δ𝑇1
𝑡

𝑥2 = 𝐴 cos
2𝜋

Δ𝑇2
𝑡

𝑥3 = 𝐴 cos
2𝜋

Δ𝑇3
𝑡

Δ𝑇1

Δ𝑇2

Δ𝑇3



Sinusoid – Phase Offset

𝑣

𝑡

𝜙2

𝑥1 = 𝐴 cos𝜔𝑡

Phase angle at 𝒕 = 𝟎

𝜙3

𝑥2 = 𝐴 cos(𝜔𝑡 − 𝜙2)

𝑥3 = 𝐴 cos(𝜔𝑡 + 𝜙3)

Phase Delay

Phase Advance

𝑣

𝑡𝜙

Phase Delay – subtract the angle

𝒙∅(𝒕) = 𝒙(𝒕 − 𝝓)

𝑥∅(𝑡)

𝑥(𝑡)

𝑣

𝑡𝜙

Phase Advance – add the angle

𝒙∅(𝒕) = 𝒙(𝒕 + 𝝓)

𝑥∅(𝑡) 𝑥(𝑡)



Sinusoid – Phase Offset

𝑣

𝑡
𝑥1 = 𝑨𝐜𝐨𝐬𝝎𝒕

𝑣

𝑡
𝑥2 = 𝐴 cos(𝜔𝑡 −

𝜋

2
) = 𝐀𝐬𝐢𝐧𝝎𝒕

𝑣

𝑡
𝑥3 = 𝐴 sin(𝜔𝑡 −

𝜋

2
) = −𝐀𝐜𝐨𝐬𝝎𝒕

Add a Phase Delay of 
𝜋

2

Add a Phase Delay of 
𝜋

2

𝑥4 = 𝐀𝐜𝐨𝐬𝝎𝒕

Add a Phase Advance of 
𝜋

2

𝑥5 = Acos 𝜔𝑡 +
𝜋

2
= −𝑨𝐬𝐢𝐧𝝎𝒕

Add a Phase Advance of 
𝜋

2

𝑥6 = −Asin 𝜔𝑡 +
𝜋

2
= −𝑨𝐜𝐨𝐬𝝎𝒕



Complex Number

Solution of 𝒙𝟐 = −𝟏

𝒙 = −𝟏

𝒙 = 𝒋

Argand Plane, or complex 

plane is used to represent 

complex numbers in the 

cartesian coordinate system

𝑹𝒆𝒂𝒍

𝑰𝒎𝒂𝒈𝒊𝒏𝒂𝒓𝒚

−5 −4 −3 −2 −1 1 2 3 4 5

−4𝑗

−3𝑗

−2𝑗

−1𝑗

1𝑗

2𝑗

3𝑗

4𝑗



Complex Number

𝑹𝒆𝒂𝒍

𝑰𝒎𝒂𝒈𝒊𝒏𝒂𝒓𝒚

−5 −4 −3 −2 −1 1 2 3 𝟒 5

−4𝑗

−3𝑗

−2𝑗

−1𝑗

1𝑗

2𝑗

𝟑𝒋

4𝑗

𝟑𝟕°

𝟒 + 𝒋𝟑

𝟓∠𝟑𝟕°

Cartesian Form – Use the x & y coordinates 

to represent the complex number

𝟒 + 𝒋𝟑

𝒙 + 𝒋𝒚 (general form)

Polar Form – Use the magnitude & angle to 

represent the complex number

𝟓∠𝟑𝟕°

𝑽 ∠𝜽 (general form)

Exponential Form – Variation of Polar Form

𝟓𝒆𝒋𝟑𝟕°

𝑽 𝒆𝒋𝜽(general form)



Complex Number

𝑹𝒆𝒂𝒍

𝑰𝒎𝒂𝒈𝒊𝒏𝒂𝒓𝒚

−5 −4 −3 −2 −1 1 2 3 4 5

−4𝑗

−3𝑗

−2𝑗

−1𝑗

1𝑗

2𝑗

3𝑗

4𝑗

𝜽

𝒙 + 𝒋𝒚

|𝑽|∠𝜽

Cartesian to Polar Conversion

|𝑽| = 𝒙𝟐 + 𝒚𝟐

𝜽 = 𝐭𝐚𝐧−𝟏
𝒚

𝒙

Polar to Cartesian Conversion

𝒙 = |𝑽|𝒄𝒐𝒔𝜽

𝒚 = |𝑽|𝒔𝒊𝒏𝜽



Complex Number

𝑹𝒆𝒂𝒍

𝑰𝒎𝒂𝒈𝒊𝒏𝒂𝒓𝒚

−5 −4 −3 −2 −1 1 2 3 𝟒 5

−4𝑗

−3𝑗

−2𝑗

−1𝑗

1𝑗

2𝑗

𝟑𝒋

4𝑗

𝜽𝟏

𝒙𝟏 + 𝒋𝒚𝟏
|𝑽𝟏|∠𝜽𝟏

Addition

𝑽𝟏 + 𝑽𝟐 = 𝒙𝟏 + 𝒋𝒚𝟏 + 𝒙𝟐 + 𝒋𝒚𝟐

𝑽𝟏 + 𝑽𝟐 = 𝒙𝟏 + 𝒙𝟐 + 𝒋 𝒚𝟏 + 𝒚𝟐

Simply add the real terms and imaginary 

terms separately

𝒙𝟐 + 𝒋𝒚𝟐
|𝑽𝟐|∠𝜽𝟐

𝜽𝟐

𝑽𝟏 + 𝑽𝟐



Complex Number

𝑹𝒆𝒂𝒍

𝑰𝒎𝒂𝒈𝒊𝒏𝒂𝒓𝒚

−5 −4 −3 −2 −1 1 2 3 𝟒 5

−4𝑗

−3𝑗

−2𝑗

−1𝑗

1𝑗

2𝑗

𝟑𝒋

4𝑗

𝜽𝟏

𝑽𝟏 − 𝑽𝟐

𝜽𝟐 − 𝟏𝟖𝟎°

−𝒙𝟐 − 𝒋𝒚𝟐
|𝑽𝟐|∠ 𝜽𝟐 − 𝟏𝟖𝟎°Subtraction

𝑽𝟏 − 𝑽𝟐 = 𝒙𝟏 + 𝒋𝒚𝟏 − 𝒙𝟐 + 𝒋𝒚𝟐

𝑽𝟏 − 𝑽𝟐 = 𝒙𝟏 − 𝒙𝟐 + 𝒋 𝒚𝟏 − 𝒚𝟐

Simply subtract the real terms and 

imaginary terms separately

𝒙𝟏 + 𝒋𝒚𝟏
|𝑽𝟏|∠𝜽𝟏

𝒙𝟐 + 𝒋𝒚𝟐
|𝑽𝟐|∠𝜽𝟐



Complex Number

𝑹𝒆𝒂𝒍

𝑰𝒎𝒂𝒈𝒊𝒏𝒂𝒓𝒚

−5 −4 −3 −2 −1 1 2 3 4 5

−4𝑗

−3𝑗

−2𝑗

−1𝑗

1𝑗

2𝑗

3𝑗

4𝑗

𝜽𝟏

Multiplication

𝑽𝟏 × 𝑽𝟐 = 𝒙𝟏 + 𝒚𝟏𝒋 × 𝒙𝟐 + 𝒚𝟐𝒋

𝑽𝟏 × 𝑽𝟐 = 𝒙𝟏𝒙𝟐 + 𝒙𝟏𝒚𝟐𝒋 + 𝒚𝟏𝒙𝟐 + 𝒚𝟏𝒚𝟐𝒋
𝟐

𝑽𝟏 × 𝑽𝟐 = 𝒙𝟏𝒙𝟐 + 𝒙𝟏𝒚𝟐𝒋 + 𝒚𝟏𝒙𝟐𝒋 + 𝒚𝟏𝒚𝟐(−𝟏)

𝑽𝟏 × 𝑽𝟐 = (𝒙𝟏𝒙𝟐 − 𝒚𝟏𝒚𝟐) + (𝒙𝟏𝒚𝟐 + 𝒚𝟏𝒙𝟐)𝒋

Simpler method using Polar Form

𝑽𝟏 × 𝑽𝟐 = |𝑽𝟏 ||𝑽𝟐 |∠(𝜽𝟏 + 𝜽𝟐)𝑽𝟏 × 𝑽𝟐
= |𝑽𝟏 |∠𝜽𝟏 × |𝑽𝟐 |∠𝜽𝟐

𝜽𝟐

𝑽𝟏 × 𝑽𝟐

𝒙𝟏 + 𝒋𝒚𝟏
|𝑽𝟏|∠𝜽𝟏

𝒙𝟐 + 𝒋𝒚𝟐
|𝑽𝟐|∠𝜽𝟐



Complex Number

𝑹𝒆𝒂𝒍

𝑰𝒎𝒂𝒈𝒊𝒏𝒂𝒓𝒚

−5 −4 −3 −2 −1 1 2 3 4 5

−4𝑗

−3𝑗

−2𝑗

−1𝑗

1𝑗

2𝑗

3𝑗

4𝑗

𝜽𝟏

Division

𝑽𝟏 ÷ 𝑽𝟐 =
𝒙𝟏 + 𝒋𝒚𝟏
𝒙𝟐 + 𝒋𝒚𝟐

𝑽𝟏 ÷ 𝑽𝟐 =
𝒙𝟏 + 𝒋𝒚𝟏 × 𝒙𝟐 − 𝒋𝒚𝟐
𝒙𝟐 + 𝒋𝒚𝟐 × 𝒙𝟐 − 𝒋𝒚𝟐

𝑽𝟏 ÷ 𝑽𝟐 =
𝒙𝟏𝒙𝟐 + 𝒚𝟏𝒚𝟐 − 𝒋(𝒙𝟏𝒚𝟐 − 𝒚𝟏𝒙𝟐)

𝒙𝟐
𝟐 − 𝒚𝟐

𝟐

Simpler method using Polar Form

𝑽𝟏 ÷ 𝑽𝟐 = |𝑽𝟏 |∠𝜽𝟏 ÷ |𝑽𝟐 |∠𝜽𝟐

𝑽𝟏 ÷ 𝑽𝟐 =
|𝑽𝟏 |

|𝑽𝟐 |
∠ 𝜽𝟏 − 𝜽𝟐

𝜽𝟐

𝑽𝟏 ÷ 𝑽𝟐

𝒙𝟏 + 𝒋𝒚𝟏
|𝑽𝟏|∠𝜽𝟏

𝒙𝟐 + 𝒋𝒚𝟐
|𝑽𝟐|∠𝜽𝟐



Learning Outcomes

• Fundamentals of Alternating Current – or AC

• DC v AC circuit study – waveforms a function of time!

• Sinusoidal waveform – voltage & current

• Complex Numbers

• AC circuits

• Phasor study – simple way to solve time-varying circuits 

• Resistor, Inductor, Capacitor in phasor form - CIVIL

• Reactance – Purely reactive circuits (just inductor/capacitor)

• Impedance – Resistance & Reactance

• Power in AC circuits

• Active v Reactive v Apparent Power

• Power Factor

• Resonance



Phasor

𝑹𝒆𝒂𝒍

𝑰𝒎𝒂𝒈𝒊𝒏𝒂𝒓𝒚

−5 −4 −3 −2 −1 1 2 3 4 5

−4𝑗

−3𝑗

−2𝑗

−1𝑗

1𝑗

2𝑗

3𝑗

4𝑗

𝜽

𝑽 𝐜𝐨𝐬𝜽 + 𝒋 𝑽 𝐬𝐢𝐧𝜽
|𝑽|∠𝜽

If we make 𝜃 a function of time, 

i.e., 𝜽 𝒕 = 𝝎𝒕 + 𝝓, we can use 

the “maths” of complex numbers 

to do the “electrical” of AC!



Phasor

𝑹𝒆𝒂𝒍

𝑰𝒎𝒂𝒈𝒊𝒏𝒂𝒓𝒚

−5 −4 −3 −2 −1 1 2 3 4 5

−4𝑗

−3𝑗

−2𝑗

−1𝑗

1𝑗

2𝑗

3𝑗

4𝑗

𝜽

𝑽 𝐜𝐨𝐬𝜽 + 𝒋 𝑽 𝐬𝐢𝐧𝜽
|𝑽|∠𝜽

If we make 𝜃 a function of time, 

i.e., 𝜽 𝒕 = 𝝎𝒕 + 𝝓, we can use 

the “maths” of complex numbers 

to do the “electrical” of AC!

𝝎𝒕 + 𝝓

𝑽 𝐜𝐨𝐬(𝝎𝒕 + 𝝓) + 𝒋 𝑽 𝐬𝐢𝐧(𝝎𝒕 + 𝝓)
|𝑽|∠(𝝎𝒕 + 𝝓)

𝑽 𝐬𝐢𝐧(𝝎𝒕 + 𝝓)

𝑽 𝐜𝐨𝐬(𝝎𝒕 + 𝝓)



Phasor

𝑹𝒆𝒂𝒍

𝑰𝒎𝒂𝒈𝒊𝒏𝒂𝒓𝒚

−5 −4 −3 −2 −1 1 2 3 4 5

−4𝑗

−3𝑗

−2𝑗

−1𝑗

1𝑗

2𝑗

3𝑗

4𝑗

𝜽

𝑽 𝐜𝐨𝐬𝜽 + 𝒋 𝑽 𝐬𝐢𝐧𝜽
|𝑽|∠𝜽

𝝎𝒕 + 𝝓

𝑽 𝐜𝐨𝐬(𝝎𝒕 + 𝝓) + 𝒋 𝑽 𝐬𝐢𝐧(𝝎𝒕 + 𝝓)
|𝑽|∠(𝝎𝒕 + 𝝓)

𝑽 𝐬𝐢𝐧(𝝎𝒕 + 𝝓)

𝑽 𝐜𝐨𝐬(𝝎𝒕 + 𝝓)

Say we have a voltage variable 

𝒗 = 𝑽 𝒄𝒐𝒔(𝝎𝒕 + 𝝓)

We may represent it with a 

“phasor” which is nothing but a 

complex number that 

represents the initial position of 

the rotating vector (i.e., at 𝑡 =
0), and say the “projection on 

positive real axis” is the value 

of the physical variable



Phasor

𝑹𝒆𝒂𝒍

𝑰𝒎𝒂𝒈𝒊𝒏𝒂𝒓𝒚

−5 −4 −3 −2 −1 1 2 3 4 5

−4𝑗

−3𝑗

−2𝑗

−1𝑗

1𝑗

2𝑗

3𝑗

4𝑗

𝝓

|𝑽|∠𝝓

𝑽 𝐬𝐢𝐧𝝓

𝑽 𝐜𝐨𝐬𝝓

• A phasor is a complex number that 

represents the initial position of a rotating 

vector, i.e., at 𝑡 = 0

• Use the amplitude ( 𝑉 ) and phase offset 

(𝜙) of a cosine function

• For all AC steady-state analysis, 𝑉 and 𝜙
are all we need to get meaningful results

• AC steady-state analysis – this assumes 

frequency 𝜔 does not change

For example, voltage 𝒗 = 𝟏𝟓𝟎𝒄𝒐𝒔(𝟓𝟎𝒕 + 𝟐𝟓°) may be 

represented in the phasor form as follows: 

Numeric Form – 𝟏𝟓𝟎∠𝟐𝟓° Visual Form –
150

25°



Phasor

𝑹𝒆𝒂𝒍

𝑰𝒎𝒂𝒈𝒊𝒏𝒂𝒓𝒚

−5 −4 −3 −2 −1 1 2 3 4 5

−4𝑗

−3𝑗

−2𝑗

−1𝑗

1𝑗

2𝑗

3𝑗

4𝑗

𝝓

|𝑽|∠𝝓

𝑽 𝐬𝐢𝐧𝝓

𝑽 𝐜𝐨𝐬𝝓

• A phasor is a complex number that 

represents the initial position of a rotating 

vector, i.e., at 𝑡 = 0

• Use the amplitude ( 𝑉 ) and phase offset 

(𝜙) of a cosine function

• For all AC steady-state analysis, 𝑉 and 𝜙
are all we need to get meaningful results

• AC steady-state analysis – this assumes 

frequency 𝜔 does not change

For example, current 𝒊 = 𝟏𝟎𝒄𝒐𝒔(𝟓𝟎𝒕 −
𝝅

𝟔
) may be 

represented in the phasor form as follows: 

Numeric Form – 𝟏𝟎∠
𝝅

𝟔
Visual Form –

10

𝜋

6



Phasors in Resistive Circuit

𝑅𝑉 cos(𝜔𝑡 + 𝜙)
+

−

𝒊 • Convert all variables to 

phasors or to complex form

• Apply the usual – Kirchhoff’s

& Ohm’s Laws

• Solve the circuit like you did 

earlier – only difference being 

you are now using complex 

numbers! 



Phasors in Resistive Circuit

𝑅 + 𝑗0𝑽∠𝝓
+

−

𝑰∠𝜽 • Convert all variables to 

phasors or to complex form

• Apply the usual – Kirchhoff’s

& Ohm’s Laws

• Solve the circuit like you did 

earlier – only difference being 

you are now using complex 

numbers! 



Phasors in Resistive Circuit

𝑅 + 𝑗0𝑽∠𝝓
+

−

• Convert all variables to 

phasors or to complex form

• Apply the usual – Kirchhoff’s

& Ohm’s Laws

• Solve the circuit like you did 

earlier – only difference being 

you are now using complex 

numbers! 
𝒗 = 𝒊𝑹

𝑽∠𝝓 = 𝑰𝑹∠𝜽

𝑰∠𝜽 =
𝑽

𝑹
∠𝝓

𝑰∠𝜽



Phasors in Resistive Circuit

𝑅 + 𝑗0𝑽∠𝝓
+

−

𝒗 = 𝒊𝑹
𝑽∠𝝓 = 𝑰𝑹∠𝜽

𝑰∠𝜽 =
𝑽

𝑹
∠𝝓

𝑣

𝑡

𝑖

𝒗 = 𝑉 cos(𝜔𝑡 + 𝜙)

𝒊 =
𝑉

𝑅
cos(𝜔𝑡 + 𝜙)

𝑽

𝜙

𝑰 =
𝑽

𝑹

𝑹𝒆𝒂𝒍

𝑰𝒎𝒂𝒈𝒊𝒏𝒂𝒓𝒚

𝑰∠𝜽



Why Phasors?

Phasors are not very useful for purely resistive circuits!

In resistive circuits, as there is no storage of energy in the resistive 

element, the current is always in phase with the voltage

But what about reactive elements? 

Due to energy storage (and release) from inductors and capacitors, 

current is not in phase with voltage

This is where phasors come in handy – lets you avoid solving tedious 

differential equations



Phasors in Inductive Circuit

𝐿𝑉 cos(𝜔𝑡 + 𝜙𝑣)
+

−

𝒊 = 𝐼 cos(𝜔𝑡 + 𝜙𝑖)

We know for an inductor: 𝒗 = 𝑳
𝒅𝒊

𝒅𝒕

𝒗 = 𝑉 cos(𝜔𝑡 + 𝜙𝑣) = 𝑽𝒆𝒋(𝝎𝒕+𝝓𝒗)

𝒊 = 𝐼 cos(𝜔𝑡 + 𝜙𝑖) = 𝑰𝒆𝒋(𝝎𝒕+𝝓𝒊)

Applying this: 

𝑉𝑒𝑗(𝜔𝑡+𝜙𝑣) = 𝐿
𝑑(𝐼𝑒𝑗(𝜔𝑡+𝜙𝑖))

𝑑𝑡

𝑉𝑒𝑗(𝜔𝑡+𝜙𝑣)𝑑𝑡 = 𝐿𝑑(𝐼𝑒𝑗(𝜔𝑡+𝜙𝑖))

𝑉න𝑒𝑗(𝜔𝑡+𝜙𝑣)𝑑𝑡 = 𝐿𝐼 න𝑑(𝑒𝑗(𝜔𝑡+𝜙𝑖))

𝑉
𝑒𝑗 𝜔𝑡+𝜙𝑣

𝑗𝜔
= 𝐿𝐼𝑒𝑗(𝜔𝑡+𝜙𝑖)

𝑉𝑒𝑗 𝜔𝑡+𝜙𝑣 = j𝜔𝐿𝐼𝑒𝑗(𝜔𝑡+𝜙𝑖)

𝒗 = 𝒋𝝎𝑳𝒊

You do 

not need 

to learn 

calculus 

here –

there is 

an easy 

way!



Phasors in Inductive Circuit

𝒋𝝎𝑳
+

− 𝑽∠𝝓𝒗

𝑰∠𝝓𝒊

We know for an inductor: 𝒗 = 𝑳
𝒅𝒊

𝒅𝒕

𝒗 = 𝑉 cos(𝜔𝑡 + 𝜙𝑣) = 𝑽𝒆𝒋(𝝎𝒕+𝝓𝒗)

𝒊 = 𝐼 cos(𝜔𝑡 + 𝜙𝑖) = 𝑰𝒆𝒋(𝝎𝒕+𝝓𝒊)

Applying this: 

𝑉𝑒𝑗(𝜔𝑡+𝜙𝑣) = 𝐿
𝑑(𝐼𝑒𝑗(𝜔𝑡+𝜙𝑖))

𝑑𝑡

𝑉𝑒𝑗(𝜔𝑡+𝜙𝑣)𝑑𝑡 = 𝐿𝑑(𝐼𝑒𝑗(𝜔𝑡+𝜙𝑖))

𝑉න𝑒𝑗(𝜔𝑡+𝜙𝑣)𝑑𝑡 = 𝐿𝐼 න𝑑(𝑒𝑗(𝜔𝑡+𝜙𝑖))

𝑉
𝑒𝑗 𝜔𝑡+𝜙𝑣

𝑗𝜔
= 𝐿𝐼𝑒𝑗(𝜔𝑡+𝜙𝑖)

𝑉𝑒𝑗 𝜔𝑡+𝜙𝑣 = j𝜔𝐿𝐼𝑒𝑗(𝜔𝑡+𝜙𝑖)

𝒗 = 𝒋𝝎𝑳𝒊

You do 

not need 

to learn 

calculus 

here –

there is 

an easy 

way!

Convert inductance to complex form

Solve using Ohm’s & Kirchhoff’s Laws



Phasors in Inductive Circuit

𝒋𝝎𝑳
+

− 𝑽∠𝝓𝒗

𝑰∠𝝓𝒊

Convert inductance to complex form

Solve using Ohm’s & Kirchhoff’s Laws

Ohm’s Law:

𝑉 = 𝐼𝑅
But this needs to be generalised to incorporate complex 

“resistance” – reactance – symbol 𝑋

𝑣 = 𝑖𝑋

𝑉∠𝜙𝑣 = 𝐼∠𝜙𝑖𝑋

𝑉∠𝜙𝑣 = 𝐼∠𝜙𝑖𝑗𝜔𝐿

𝑉

𝑗𝜔𝐿
∠𝜙𝑣 = 𝐼∠𝜙𝑖

Now remember complex number division:

𝑉

𝜔𝐿
∠𝜙𝑣 ÷ 𝑗1 = 𝐼∠𝜙𝑖

𝑉

𝜔𝐿
∠𝜙𝑣 ÷ 1∠90° = 𝐼∠𝜙𝑖

𝑽

𝝎𝑳
∠(𝝓𝒗 − 𝟗𝟎°) = 𝑰∠𝝓𝒊



Phasors in Inductive Circuit

𝒋𝝎𝑳
+

− 𝑽∠𝝓𝒗

𝑰∠𝝓𝒊 =
𝑽

𝝎𝑳
∠(𝝓𝒗 − 𝟗𝟎°)

𝑣

𝑡

𝑖

𝒗 = 𝑉 cos(𝜔𝑡 + 𝜙𝑣)

𝒊 =
𝑉

𝜔𝐿
cos(𝜔𝑡 + 𝜙𝑣 − 90°)

𝑽

𝜙v

𝑰 =
𝑽

𝝎𝑳

𝑹𝒆𝒂𝒍

𝑰𝒎𝒂𝒈𝒊𝒏𝒂𝒓𝒚

90°

In purely inductive circuit, the current

LAGS voltage by 90° or 
𝜋

2
𝑟𝑎𝑑𝑖𝑎𝑛𝑠



Phasors in Capacitive Circuit

𝐶𝑉 cos(𝜔𝑡 + 𝜙𝑣)
+

−

𝒊 = 𝐼 cos(𝜔𝑡 + 𝜙𝑖)

We know for a capacitor: 𝒊 = 𝑪
𝒅𝒗

𝒅𝒕

𝒗 = 𝑉 cos(𝜔𝑡 + 𝜙𝑣) = 𝑽𝒆𝒋(𝝎𝒕+𝝓𝒗)

𝒊 = 𝐼 cos(𝜔𝑡 + 𝜙𝑖) = 𝑰𝒆𝒋(𝝎𝒕+𝝓𝒊)

Applying this: 

𝑖 = 𝐶
𝑑(𝑉𝑒𝑗(𝜔𝑡+𝜙𝑣))

𝑑𝑡

𝑖 = 𝐶𝑉
𝑑(𝑒𝑗(𝜔𝑡+𝜙𝑣))

𝑑𝑡

𝑖 = 𝑗𝜔𝐶𝑉𝑒𝑗(𝜔𝑡+𝜙𝑣)

1

𝑗𝜔𝐶
𝑖 = 𝑉𝑒𝑗(𝜔𝑡+𝜙𝑣)

𝒗 =
𝟏

𝒋𝝎𝑪
𝒊

You do 

not need 

to learn 

calculus 

here –

there is 

an easy 

way!



Phasors in Capacitive Circuit

+

−

We know for a capacitor: 𝒊 = 𝑪
𝒅𝒗

𝒅𝒕

𝒗 = 𝑉 cos(𝜔𝑡 + 𝜙𝑣) = 𝑽𝒆𝒋(𝝎𝒕+𝝓𝒗)

𝒊 = 𝐼 cos(𝜔𝑡 + 𝜙𝑖) = 𝑰𝒆𝒋(𝝎𝒕+𝝓𝒊)

Applying this: 

𝑖 = 𝐶
𝑑(𝑉𝑒𝑗(𝜔𝑡+𝝓𝒗))

𝑑𝑡

𝑖 = 𝐶𝑉
𝑑(𝑒𝑗(𝜔𝑡+𝝓𝒗))

𝑑𝑡

𝑖 = 𝑗𝜔𝐶𝑉𝑒𝑗(𝜔𝑡+𝝓𝒗)

1

𝑗𝜔𝐶
𝑖 = 𝑉𝑒𝑗(𝜔𝑡+𝝓𝒗)

𝒗 =
𝟏

𝒋𝝎𝑪
𝒊

You do 

not need 

to learn 

calculus 

here –

there is 

an easy 

way!

𝑽∠𝝓𝒗

𝑰∠𝝓𝒊

Convert capacitance to reactance

Solve using Ohm’s & Kirchhoff’s Laws

𝟏

𝒋𝝎𝑪



Phasors in Capacitive Circuit

Convert capacitance to reactance

Solve using Ohm’s & Kirchhoff’s Laws

Ohm’s Law:

𝑉 = 𝐼𝑅
But this needs to be generalised to incorporate complex 

“resistance” – reactance – symbol 𝑋

𝑣 = 𝑖𝑋

𝑉∠𝜙𝑣 = 𝐼∠𝜙𝑖𝑋

𝑉∠𝜙𝑣 = 𝐼∠𝜙𝑖
1

𝑗𝜔𝐶

𝑉𝑗𝜔𝐶∠𝜙𝑣 = 𝐼∠𝜙𝑖
Now remember complex number multiplication:

𝑉𝜔𝐶∠𝜙𝑣 × 𝑗1 = 𝐼∠𝜙𝑖

𝑉𝜔𝐶∠𝜙𝑣 × 1∠90° = 𝐼∠𝜙𝑖

𝑽𝝎𝑪∠(𝝓𝒗 + 𝟗𝟎°) = 𝑰∠𝝓𝒊

+

− 𝑽∠𝝓𝒗

𝟏

𝒋𝝎𝑪

𝑰∠𝝓𝒊



Phasors in Capacitive Circuit

+

− 𝑽∠𝝓𝒗

𝟏

𝒋𝝎𝑪

𝑰∠𝝓𝒊 = 𝑽𝝎𝑪∠(𝝓𝒗 + 𝟗𝟎°)

𝑣

𝑡

𝑖

𝒗 = 𝑉 cos(𝜔𝑡 + 𝜙𝑣)

𝒊 = 𝑉𝜔𝐶 cos(𝜔𝑡 + 𝜙𝑣 + 90°)

𝑽

𝜙v

𝑰 = 𝑽𝝎𝑪

𝑹𝒆𝒂𝒍

𝑰𝒎𝒂𝒈𝒊𝒏𝒂𝒓𝒚

90°

In purely capacitive circuit, the current

LEADS voltage by 90° or 
𝜋

2
𝑟𝑎𝑑𝑖𝑎𝑛𝑠



Reactive Circuits – Summary

𝑿𝑪 =
𝟏

𝒋𝝎𝑪
𝑿𝑳 = 𝒋𝝎𝑳

current LAGS voltage by 90° or 
𝜋

2
𝑟𝑎𝑑𝑖𝑎𝑛𝑠 current LEADS voltage by 90° or 

𝜋

2
𝑟𝑎𝑑𝑖𝑎𝑛𝑠

CIVIL



The Real Circuit (Resistive + Reactive)

+

− 𝑽∠𝝓𝒗

𝑰∠𝝓𝒊

𝟏

𝒋𝝎𝑪

𝑹

𝒋𝝎𝑳

It is practically impossible to have a  

purely reactive circuit – any inductor or 

capacitor would have some parasitic 

resistance values

Remember we discussed Impedance in 

the previous lecture!

Impedance indicates how much a load 

“impedes” or hinders the flow of 

current through itself on application of 

a set amount of voltage across it

Generalisation of Resistance – now 

incorporates AC circuits as well

Ohm’s Law still applies!

𝑰𝒎𝒑𝒆𝒅𝒂𝒏𝒄𝒆 = 𝒁 = 𝑹 + 𝒋𝝎𝑳 +
𝟏

𝒋𝝎𝑪



The Real Circuit (Resistive + Reactive)

𝑍1

𝑍2

𝑍3

𝑍1 𝑍2 𝑍3

𝑍1 𝑍2

𝑍3

Series

When two (or more) elements are 

connected together head-to-toe

Parallel

When two (or more) elements are 

connected head-to-head and toe-

to-toe

Series-Parallel

Combination of the both

𝑰

𝑽𝟏

𝑽𝟐

𝑽𝟑

𝑽

𝑰

𝑰𝟏 𝑰𝟐 𝑰𝟑

𝑽

𝒁 =𝒁𝒊
𝟏

𝒁
=

𝟏

𝒁𝒊

Break the circuit up into series and 

parallel and solve individually



Example of Real Circuit

+

−

𝟐𝟎𝑽
𝟓𝟎𝑯𝒛

𝑰∠𝝓𝒊

𝑪 = 𝟓𝟎𝝁𝑭

𝑹 = 𝟏𝟎𝛀

𝑳 = 𝟐𝟎𝒎𝑯

𝒁𝑹 = 𝟏𝟎𝛀

𝒁𝑳 = 𝑗𝜔𝐿 = 𝑗2𝜋𝑓𝐿 = 𝑗2 × 3.14 × 50 × 20 × 10−3 = 𝒋𝟔. 𝟐𝟖𝛀

𝒁𝑪 =
1

𝑗𝜔𝐶
=

1

𝑗2𝜋𝑓𝐶
=

−𝑗

2 × 3.14 × 50 × 50 × 10−6
= −𝒋𝟔𝟑. 𝟔𝟔𝛀

The three elements are clearly in series

𝒁 = 𝑍𝑅 + 𝑍𝐿 + 𝑍𝐶 = 10 + 𝑗 6.28 − 63.69 = 𝟏𝟎 − 𝒋𝟓𝟕. 𝟑𝟖

Applying Ohm’s Law, we need to divide V by Z, remember, for division, we 

need complex numbers in polar form

𝒁 = 𝟏𝟎𝟐 + 𝟓𝟕. 𝟒𝟏𝟐 = 𝟑𝟑𝟗𝟓. 𝟗𝟏 = 𝟓𝟖. 𝟐𝟒

∠𝒁 = tan−𝟏
−𝟓𝟕. 𝟒𝟏

𝟏𝟎
= −𝟖𝟎. 𝟏𝟏°

Applying Ohm’s Law

𝑰 =
𝑽

𝒁
=

𝟐𝟎∠𝟎°

𝟓𝟖. 𝟐𝟒∠ − 𝟖𝟎. 𝟏𝟏°
= 𝟎. 𝟑𝟒𝟑∠𝟖𝟎. 𝟏𝟏°

𝟐𝟎𝑽

𝑰 = 𝟎. 𝟑𝟒𝟑𝑨

𝑹𝒆𝒂𝒍

𝑰𝒎𝒂𝒈𝒊𝒏𝒂𝒓𝒚

80.11°

When no info on 

phase offset for 

voltage provided, 

no harm in setting 

it to 0°, makes 

calculations 

easier!



Learning Outcomes

• Fundamentals of Alternating Current – or AC

• DC v AC circuit study – waveforms a function of time!

• Sinusoidal waveform – voltage & current

• Complex Numbers

• AC circuits

• Phasor study – simple way to solve time-varying circuits 

• Resistor, Inductor, Capacitor in phasor form - CIVIL

• Reactance – Purely reactive circuits (just inductor/capacitor)

• Impedance – Resistance & Reactance

• Power in AC circuits

• Active v Reactive v Apparent Power

• Power Factor

• Resonance



Root Mean Square (RMS)

• In mathematics, the root-mean-square (or RMS) of a set of numbers 𝑥𝑖 is defined as the square root 

of the arithmetic mean of the squares of the set

𝑥 =
𝑥1
2 + 𝑥2

2 + 𝑥3
2 +⋯+ 𝑥𝑛

2

𝑛
=

σ𝑥𝑖
2

𝑛

• When dealing with AC applications, the amplitude of voltage or current is seldom used (we will see 

shortly why – power)

• Hence, AC ammeters/voltmeters are invariably calibrated for RMS value – not peak/amplitude

• For all sinusoidal waves, the RMS value is 
1

2
= 0.707 times the amplitude

• It is much more convenient to make the length of phasors represent RMS instead of amplitude

• Going forward, we will deal with only RMS values when studying AC

𝑹𝑴𝑺 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝑽 = 𝑽𝒓𝒎𝒔 =
𝑽

𝟐
= 𝟎. 𝟕𝟎𝟕𝑽



Power in Resistive Circuit

𝑅𝑣(𝒕)
+

−

𝒊(𝒕)

𝒗(𝒕) = 𝑉 cos𝜔𝑡

𝒊(𝒕) = 𝐼 cos𝜔𝑡

Instantaneous power

𝒑 𝒕 = 𝒗 𝒕 × 𝒊(𝒕)

𝒑 𝒕 = 𝑉 cos𝜔𝑡 × 𝐼 cos𝜔𝑡

𝒑 𝒕 =
𝑽𝑰

𝟐
(𝟏 + 𝐜𝐨𝐬 𝟐𝝎𝒕) =

𝑰𝟐𝑹

𝟐
(𝟏 + 𝒄𝒐𝒔𝟐𝝎𝒕) =

𝑽𝟐

𝟐𝑹
(𝟏 + 𝒄𝒐𝒔 𝟐𝝎𝒕)

𝒗

𝒊

𝒑

Average power – integrate over full cycle

𝑃𝑎𝑣𝑔 = න
𝑉𝐼

2
(1 + cos 2𝜔𝑡)

𝑃𝑎𝑣𝑔 =
𝑉𝐼

2
+ 0

𝑷𝒂𝒗𝒈 =
𝑽𝒎

𝟐

𝑰𝒎

𝟐
= 𝑽𝒓𝒎𝒔𝑰𝒓𝒎𝒔



Power in Resistive Circuit

Proof (don’t learn)

𝑃𝑎𝑣𝑔 =
1

𝑇
න
0

𝑇

𝑝(𝑡) 𝑑𝑡

=
1

𝑇
න
0

𝑇

𝑣(𝑡)𝑖(𝑡) 𝑑𝑡

=
1

𝑇
න
0

𝑇

𝑉 cos(𝜔𝑡)𝐼 cos(𝜔𝑡) 𝑑𝑡

=
1

𝑇
න
0

𝑇𝑉𝐼

2
1 + cos( 2𝜔𝑡) 𝑑𝑡

=
1

𝑇
න
0

𝑇𝑉𝐼

2
𝑑𝑡 +

1

𝑇
න
0

𝑇𝑉𝑚𝐼𝑚
2

cos( 2𝜔𝑡) 𝑑𝑡

=
𝑉𝐼

2
−

1

𝜔𝑇
න
0

2𝜋𝑉𝑚𝐼𝑚
2

cos( 2𝜔𝑡) 𝑑𝜔𝑡

=
𝑉𝐼

2
= 𝑉𝑟𝑚𝑠𝐼𝑟𝑚𝑠

𝑷𝒂𝒗𝒈 =
𝑽𝒎

𝟐

𝑰𝒎

𝟐
= 𝑽𝒓𝒎𝒔𝑰𝒓𝒎𝒔

Remember that power in DC circuits 

𝑷 = 𝑽𝒅𝒄 × 𝑰𝒅𝒄

Equivalently, the AC counterparts for 

𝑽𝒅𝒄 is 𝑽𝒓𝒎𝒔 and 𝑰𝒅𝒄 is 𝑰𝒓𝒎𝒔

That is why we always use the RMS 

value of voltage and current



Power in Inductive Circuit

𝒗(𝒕) = 𝑽 𝐜𝐨𝐬𝝎𝒕

𝒊(𝒕) = 𝑰 𝐬𝐢𝐧𝝎𝒕

Instantaneous power

𝒑 𝒕 = 𝒗 𝒕 × 𝒊(𝒕)

𝒑 𝒕 = 𝑉 cos𝜔𝑡 × 𝐼 sin𝜔𝑡

𝒑 𝒕 =
𝑽𝑰

𝟐
𝒔𝒊𝒏𝟐𝝎𝒕 =

𝝎𝑳𝑰𝟐

𝟐
𝒔𝒊𝒏𝟐𝝎𝒕 =

𝑽𝟐

𝟐𝝎𝑳
𝒔𝒊𝒏 𝟐𝝎𝒕

𝐿𝑣(𝒕)
+

−

𝒊(𝒕)

Average power is ZERO!

Energy absorbed from the source

Energy released to the source

𝒗
𝒊

𝒑

𝜋

2

Do you know why?



Power in Capacitive Circuit

𝒗(𝒕) = 𝑽 𝐜𝐨𝐬𝝎𝒕

𝒊(𝒕) = −𝑰 𝐬𝐢𝐧𝝎𝒕

Instantaneous power

𝒑 𝒕 = 𝒗 𝒕 × 𝒊(𝒕)

𝒑 𝒕 = −𝑉 cos𝜔𝑡 × 𝐼 sin𝜔𝑡

𝒑 𝒕 =
−𝑽𝑰

𝟐
𝒔𝒊𝒏 𝟐𝝎𝒕 =

𝑰𝟐

𝟐𝝎𝑪
𝒔𝒊𝒏𝟐𝝎𝒕 =

𝝎𝑪𝑽𝟐

𝟐
𝒔𝒊𝒏𝟐𝝎𝒕

𝐶𝑣(𝒕)
+

−

𝒊(𝒕)

Average power is ZERO!

Energy absorbed from the source

Energy released to the source

𝒗

𝒊

𝒑

3𝜋

2

Do you know why?

Do you know why?



Power in Real Circuit (Resistive + Reactive)

𝒗(𝒕) = 𝑽 𝐜𝐨𝐬𝝎𝒕

𝒊(𝒕) = 𝑰 𝐜𝐨𝐬(𝝎𝒕 + 𝜸)

Instantaneous power

𝒑 𝒕 = 𝒗 𝒕 × 𝒊(𝒕)

𝒑 𝒕 = 𝑉 cos𝜔𝑡 × 𝐼 cos(𝜔𝑡 + 𝛾)

𝑝 𝑡 =
𝑉𝐼

2
{cos 𝜔𝑡 − 𝜔𝑡 − 𝛾 + cos 𝜔𝑡 + 𝜔𝑡 + 𝛾 }

𝒑 𝒕 = 𝑽𝒓𝒎𝒔𝑰𝒓𝒎𝒔 𝒄𝒐𝒔 𝜸 + 𝑽𝒓𝒎𝒔𝑰𝒓𝒎𝒔 𝒄𝒐𝒔 𝟐𝝎𝒕 + 𝜸

Average power is 𝑽𝒓𝒎𝒔𝑰𝒓𝒎𝒔 𝒄𝒐𝒔𝜸

Energy absorbed from the source

𝑍𝑣(𝒕)
+

−

𝒊(𝒕)

Energy released to the source

This term averages 

to zero over a cycle

Average Power
Power 

Factor

𝒗
𝒊

𝒑

𝛾



Power Factor

𝑷𝒂𝒗𝒈 = 𝑽𝒓𝒎𝒔𝑰𝒓𝒎𝒔 𝒄𝒐𝒔𝜸

𝒄𝒐𝒔𝜸 = 𝑷𝒐𝒘𝒆𝒓 𝑭𝒂𝒄𝒕𝒐𝒓 = 𝑷𝑭

𝜸 is the phase deviation between voltage & current

PF tells us what fraction of the current does useful 

work

Is it phase advance/delay? Does it matter? 

Energy absorbed from the source

𝑍𝑣(𝒕)
+

−

𝒊(𝒕)

Energy released to the source

𝒗
𝒊

𝒑

𝜙



Power Factor

Purely Resistive Load

𝑅

𝜸 = 0°

cos 𝜸 = 1
All power consumed

Purely Reactive Load

𝐿 or 𝐶

𝜸 = ±90°

cos 𝜸 = 0
No real power 

consumed

Real Inductive Load

𝑅𝐿 or 𝑅𝐿𝐶

−90° < 𝜸 < 0°

0 < cos 𝜸 < 1
Part of apparent power 

consumed
Real Capacitive Load

𝑅𝐶 or 𝑅𝐿𝐶

0° < 𝜸 < 90°

0 < cos 𝜸 < 1



Active v Reactive v Apparent Power

Apparent Power (symbol S unit VA)

𝑆 = 𝑉𝑟𝑚𝑠𝐼𝑟𝑚𝑠

• As the name suggests, this is the amount of 

power that appears to be flowing from source to 

load

• This is not the case as over a cycle, some (or 

all) of this power gets returned back to source

• As the power still flows (even if it is simply 

thrown back-forth between source and load), 

losses still occur

• A good circuit should have PF very close to 

unity

• However, AC equipment are rated for Apparent 

Power as it handles both used and unused 

power

Active Power (symbol P unit W)

𝑃 = 𝑉𝑟𝑚𝑠𝐼𝑟𝑚𝑠 cos 𝛾 = 𝑉𝑟𝑚𝑠𝐼𝑟𝑚𝑠𝑃𝐹 = 𝑆 × 𝑃𝐹

• This is the real power transferred to the 

load

Reactive Power (symbol Q unit VAr)

𝑃 = 𝑉𝑟𝑚𝑠𝐼𝑟𝑚𝑠 sin 𝛾 = 𝑉𝑟𝑚𝑠𝐼𝑟𝑚𝑠 𝑠𝑖𝑛 𝛾 = 𝑆 𝑠𝑖𝑛 𝛾

• This is the purely unused power 

exchanged between the source and load



Active v Reactive v Apparent Power

Energy absorbed from the source

Energy released to the source

𝒗
𝒊

𝒑

𝜸

𝒗

𝒊

𝑹𝒆𝒂𝒍

𝑰𝒎𝒂𝒈𝒊𝒏𝒂𝒓𝒚

𝜸

𝒑

𝒊
𝐬𝐢
𝐧
𝜸

𝒊 𝐜𝐨𝐬𝜸

𝒑
𝐬𝐢
𝐧
𝜸

𝒑 𝐜𝐨𝐬𝜸

S

Apparent 

Power (VA)

P

Active 

Power (W)

Q

Reactive 

Power 

(VAr)



Resonance

• We have seen that inductor and capacitor individually 

contribute to delaying and advancing (respectively) the current 

waveform w/r/t the voltage

• When the inductance and capacitance value are equal (and 

opposite, inherently) they nullify each other – Resonance

• 𝒁𝑳 = 𝒋𝝎𝑳 increases with increasing frequency

• 𝒁𝑪 =
𝟏

𝒋𝝎𝑪
decreases with increasing frequency

• We did this example earlier with frequency (50 𝐻𝑧), we saw that the overall circuit was capacitive (i.e., 

capacitance was overpowering inductance and resultant current was 80° leading)

• What happens if we increase the frequency? 

• There will come a frequency when inductance just matches capacitance – this is resonance

• When this happens, you will be left with a purely resistive circuit, i.e., overall impedance drops!

• As you increase the frequency (from 50 𝐻𝑧), you would see current rising gradually, then sharply at 

resonance, then again start falling

+

−

𝑰∠𝝓𝒊

𝑪 = 𝟓𝟎𝝁𝑭

𝑹 = 𝟏𝟎𝛀

𝑳 = 𝟐𝟎𝒎𝑯

𝟐𝟎𝑽
𝝎



Resonance

+

−

𝟐𝟎𝑽
𝝎

𝑰∠𝝓𝒊

𝑪 = 𝟓𝟎𝝁𝑭

𝑹 = 𝟏𝟎𝛀

𝑳 = 𝟐𝟎𝒎𝑯

𝒁𝑳 = 𝒁𝑪

𝒋𝝎𝑳 =
𝟏

𝒋𝝎𝑪

𝝎 =
𝟏

𝑳𝑪

𝝎 =
𝟏

𝟐𝟎 × 𝟏𝟎−𝟑 × 𝟓𝟎 × 𝟏𝟎−𝟔
=

𝟏

𝟏𝟎−𝟔

𝝎𝒓𝒆𝒔 = 𝟏𝟎𝟎𝟎
𝒓𝒂𝒅

𝒔

Lets find out the current at resonant frequency and plot the 

phasor diagram

𝒁𝑳 = 𝑗𝜔𝑟𝑒𝑠𝐿 = 𝑗 × 1000 × 20 × 10−3 = 𝒋𝟐𝟎𝛀

𝒁𝑪 =
1

𝑗𝜔𝑟𝑒𝑠𝐶
=

−𝑗

1000 × 50 × 10−6
= −𝒋𝟐𝟎𝛀

The three elements are clearly in series

𝒁 = 𝑍𝑅 + 𝑍𝐿 + 𝑍𝐶 = 10 + 𝑗 20 − 20 = 𝟏𝟎𝛀

Applying Ohm’s Law

𝑰 =
𝑽

𝒁
=
𝟐𝟎∠𝟎°

𝟏𝟎∠𝟎°
= 𝟐∠𝟎°𝑨

2 𝐴 is significantly higher than 343 𝑚𝐴 that we calculated 

at 50 𝐻𝑧 frequency

This is because the at resonance, inductive and capacitive 

impedances nullify each other



Example 1

A coil is connected to a 50 V AC supply at 400 Hz. If the current supplied to the coil is 200 mA and 

the coil has a resistance of 60 Ω , determine the value of inductance. 

Like most practical forms of inductor, the coil in this example  has both resistance and reactance. 

We can find the impedance of the coil from:

𝑍 =
𝑉

𝐼
=
50

0.2
= 250Ω

Since

𝑍 = 𝑅2 + 𝑋2

𝑋 = 𝑍 2 − 𝑅2

𝑋 = 2502 − 602 = 243Ω

Now since 𝑋𝐿 = 2𝜋𝑓𝐿, 

𝐿 =
𝑋

2𝜋𝑓
=

243

100𝜋
= 0.097𝐻



Example 2

An AC load has a power factor of 0.8. Determine the active power dissipated in the load if it 

consumes a current of 2 A at 110 V.

Since active power

𝑃 = 𝑃𝐹 × 𝑉𝑟𝑚𝑠 × 𝐼𝑟𝑚𝑠

𝑃 = 0.8 × 110 × 2

𝑃 = 176 𝑊



Example 3

A coil having an inductance of 150 𝑚𝐻 and resistance of 250 Ω is connected to a 115 𝑉 400 𝐻𝑧 AC 

supply. Determine:

(a) the power factor of the coil

(b) the current 𝐼𝑟𝑚𝑠 taken from the supply 

(c) the power dissipated as heat in the coil.

(a) First we must find the reactance of the inductor, 𝑋𝐿, 

and the impedance, 𝑍, of the coil at 400 Hz.

𝑋𝐿 = 2𝜋 × 400 × 0.015 = 376 Ω

Thus 

𝑍 = 𝑅 + 𝑗𝑋𝐿 = 250 + 𝑗376 Ω

The power factor is

cos𝛾 =
𝑅

𝑍

Since 

𝑍 = 𝑅2 + 𝑋𝐿
2 = 2502 + 3762 = 452 Ω

Thus             𝒄𝒐𝒔𝜸 =
𝑅

𝑍
=

250

452
= 𝟎. 𝟓𝟓𝟑

(b) 

𝑰𝒓𝒎𝒔 =
𝑉𝑟𝑚𝑠

𝑍
=
115

452
= 𝟎. 𝟐𝟓𝟒 𝑨

(c) The power dissipated as heat is the active power

𝑃 = 𝑉𝑟𝑚𝑠𝐼𝑟𝑚𝑠 cos 𝛾 = 0.254 × 115 × 0.553

𝑷 = 𝟏𝟔. 𝟏𝟓𝑾



Summary

• Fundamentals of Alternating Current – or AC

• DC v AC circuit study – waveforms a function of time!

• Sinusoidal waveform – voltage & current

• Complex Numbers

• AC circuits

• Phasor study – simple way to solve time-varying circuits 

• Resistor, Inductor, Capacitor in phasor form - CIVIL

• Reactance – Purely reactive circuits (just inductor/capacitor)

• Impedance – Resistance & Reactance

• Power in AC circuits

• Active v Reactive v Apparent Power

• Power Factor

• Resonance



Attendance
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