

University of Nottingham UK | CHINA | MALAYSIA

LECTURE 2B

Alternating Current

Electromechanical Devices MMME2051

Module Convenor – Surojit Sen

Illustrations are All Creative Commons if mentioned otherwise on the illustration

- Fundamentals of **Alternating Current – or AC**
	- DC v AC circuit study waveforms a **function of time**!
	- **Sinusoidal** waveform voltage & current
	- **Complex Numbers**
- AC circuits
	- **Phasor** study simple way to solve time-varying circuits
	- Resistor, Inductor, Capacitor in phasor form **CIVIL**
	- **Reactance** Purely reactive circuits (just inductor/capacitor)
	- **Impedance** Resistance & Reactance
- Power in AC circuits
	- **Active** v **Reactive** v **Apparent** Power
	- **Power Factor**
	- **Resonance**

time

Abbreviations AC and DC are often used to mean simply alternating and direct, i.e., reference to just current dropped e.g., AC voltage, DC current etc.

Representation of any **physical variable** as a **function of time** on a **graph** (We would discuss only electrical variables like voltage and current)

Magnitude (y-axis) and **time** (x-axis)

Other waveforms like **triangular**, **sawtooth**, and **square** are abundantly used in electrical engineering – they can all be represented as a sum of infinite number of sinusoids (check out **Fourier Series**!)

Why is Sine wave interesting?

- Occurs in **nature**
- **Wind**, **sound** and **light** waves are sinusoidal

Fourier Series – Every waveform is made up of sinusoids

Motors & Generators translate rotation and voltage – **projection of a rotating object is a sinusoid**!

 $\begin{array}{c}\bullet yI(t)\\ \bullet y2(t)\\ \bullet y(t)\end{array}$

Sinusoid is a mathematical curve defined in terms of the **sine trigonometric function**

Sine and **Cosine** are both examples of sinusoid

Cosine function is simply the Sine function, but 90° advanced

We will use the **Cosine function to represent variables**

F

Sinusoid – Phase Angle

The Second University of Nottingham UK | CHINA | MALAYSIA

Sinusoid – Phase Angle

The Second

University of Nottingham UK | CHINA | MALAYSIA

Sinusoid – Phase Angle

The Second

University of Nottingham UK | CHINA | MALAYSIA

Maximum magnitude of the variable

Indicates how fast is the variable changing

University of

Nottingham UK | CHINA | MALAYSIA

μp

Phase angle at $t = 0$

Sinusoid – Phase Offset

University of Nottingham CHINA | MAI AYSIA

University of Nottingham UK | CHINA | MALAYSIA

Imaginary

Imaginary −5 −4 −3 −2 −1 1 2 3 5 $1j$ $2j$ $3j$ $4j$ 37° **Cartesian Form** – Use the x & y coordinates to represent the complex number $4 + j3$ $x + jy$ (general form) **Polar Form** – Use the magnitude & angle to represent the complex number ∠°

Real

 $4+j3$

∠°

 $-4j$

 $-3j$

 $-2j$

 $-1j$

 $|V| \angle \theta$ (general form)

Complex Number

University of Nottingham UK | CHINA | MALAYSIA

Exponential Form – Variation of Polar Form $5e^{j37^\circ}$ $V|e^{j\theta}$ (general form)

Complex Number

Cartesian to Polar Conversion

$$
|V| = \sqrt{x^2 + y^2}
$$

$$
\theta = \tan^{-1} \frac{y}{x}
$$

Polar to Cartesian Conversion

$$
x = |V|cos\theta
$$

$$
y = |V|sin\theta
$$

Addition

$$
V_1 + V_2 = (x_1 + jy_1) + (x_2 + jy_2)
$$

$$
V_1 + V_2 = (x_1 + x_2) + j(y_1 + y_2)
$$

Simply add the real terms and imaginary terms separately

$$
V_1 - V_2 = (x_1 + jy_1) - (x_2 + jy_2)
$$

$$
V_1 - V_2 = (x_1 - x_2) + j(y_1 - y_2)
$$

Simply subtract the real terms and imaginary terms separately

Multiplication

$$
V_1 \times V_2 = (x_1 + y_1 j) \times (x_2 + y_2 j)
$$

\n
$$
V_1 \times V_2 = x_1 x_2 + x_1 y_2 j + y_1 x_2 + y_1 y_2 j^2
$$

\n
$$
V_1 \times V_2 = x_1 x_2 + x_1 y_2 j + y_1 x_2 j + y_1 y_2 (-1)
$$

\n
$$
V_1 \times V_2 = (x_1 x_2 - y_1 y_2) + (x_1 y_2 + y_1 x_2) j
$$

Simpler method using Polar Form $V_1 \times V_2 = |V_1||V_2| \angle (\theta_1 + \theta_2)V_1 \times V_2$ $= |V_1| \angle \theta_1 \times |V_2| \angle \theta_2$

Simpler method using Polar Form $V_1 \div V_2 = |V_1| \angle \theta_1 \div |V_2| \angle \theta_2$ $V_1 \div V_2 = \frac{|V_1|}{|V_2|} \angle(\theta_1 - \theta_2)$

Learning Outcomes

- Fundamentals of **Alternating Current – or AC**
	- DC v AC circuit study waveforms a **function of time**!
	- **Sinusoidal** waveform voltage & current
	- **Complex Numbers**
- AC circuits
	- **Phasor** study simple way to solve time-varying circuits
	- Resistor, Inductor, Capacitor in phasor form **CIVIL**
	- **Reactance** Purely reactive circuits (just inductor/capacitor)
	- **Impedance** Resistance & Reactance
- Power in AC circuits
	- **Active** v **Reactive** v **Apparent** Power
	- **Power Factor**
	- **Resonance**

University of

Say we have a voltage variable $v = |V| cos(\omega t + \phi)$

We may represent it with a "phasor" which is nothing but a complex number that represents the initial position of the rotating vector (i.e., at $t =$ 0), and say the "projection on positive real axis" is the value of the physical variable

−5 −4 −3 −2 −1 1 2 3 4 5

 $\boldsymbol{\phi}$

 $|V|$ cos ϕ

 $-1j \leq$

 $1j$

 $|V|$ sin ϕ

 $2j$

 $3j$

 $-4j$

 $-3j$

 $-2j$

- Use the amplitude $(|V|)$ and phase offset (ϕ) of a cosine function
- For all AC steady-state analysis, $|V|$ and ϕ are all we need to get meaningful results
- AC steady-state analysis this assumes frequency ω does not change

For example, voltage $v = 150 cos(50t + 25^{\circ})$ may be represented in the phasor form as follows:

Numeric Form – 150∠25° Visual Form –

Real

150

25°

- A phasor is a complex number that represents the initial position of a rotating vector, i.e., at $t=0$
- Use the amplitude $(|V|)$ and phase offset (ϕ) of a cosine function
- For all AC steady-state analysis, $|V|$ and ϕ are all we need to get meaningful results
- AC steady-state analysis this assumes frequency ω does not change

For example, current $i = 10 cos(50t - \frac{\pi}{6})$ $\frac{n}{6}$) may be represented in the phasor form as follows:

Visual Form –

10 π 6

- Convert all variables to **phasors** or to **complex form**
- Apply the usual **Kirchhoff's** & **Ohm's** Laws
- Solve the circuit like you did earlier – only difference being you are **now using complex numbers**!

- $I \angle \theta$ **phasors** or to **complex form**
	- Apply the usual **Kirchhoff's** & **Ohm's** Laws
	- Solve the circuit like you did earlier – only difference being you are **now using complex numbers**!

$$
v = iR
$$

$$
V \angle \phi = IR \angle \theta
$$

$$
I \angle \theta = \frac{V}{R} \angle \phi
$$

- Convert all variables to **phasors** or to **complex form**
- Apply the usual **Kirchhoff's** & **Ohm's** Laws
- Solve the circuit like you did earlier – only difference being you are **now using complex** $numbers!$

Phasors in Resistive Circuit

F

University of Nottingham UK | CHINA | MALAYSIA

Phasors are not very useful for purely resistive circuits!

In resistive circuits, as there is no storage of energy in the resistive element, the current is always in phase with the voltage

But what about reactive elements?

Due to energy storage (and release) from inductors and capacitors, current is not in phase with voltage

This is where phasors come in handy – lets you avoid solving tedious differential equations

Phasors in Inductive Circuit

You do

not need

to learn

calculus

here –

there is

an easy

way!

University of Nottingham UK | CHINA | MALAYSIA

Phasors in Inductive Circuit

 $+$

University of Nottingham IK | CHINA | MAI AYSIA

−

 V ∠ ϕ _ν

 $I\angle\phi_i$

You do not need to learn calculus here – there is an easy way!

 $+$ − V ∠ ϕ _ν $I\angle\phi_i$

University of Nottingham UK | CHINA | MALAYSIA

Ohm's Law:

 $V=IR$

But this needs to be generalised to incorporate complex "resistance" – **reactance** – symbol

> $\nu = iX$ $V\angle\phi_v = I\angle\phi_iX$ $V\angle\phi_v = I\angle\phi_i j\omega L$ V $j\omega L$ $\angle \phi_v = I \angle \phi_i$

Now remember complex number division:

$$
\left[\frac{V}{\omega L} \angle \phi_v\right] \div j1 = I \angle \phi_i
$$

$$
\left[\frac{V}{\omega L} \angle \phi_v\right] \div 1 \angle 90^\circ = I \angle \phi_i
$$

$$
\frac{V}{\omega L} \angle (\phi_v - 90^\circ) = I \angle \phi_i
$$

Convert inductance to complex form

Solve using Ohm's & Kirchhoff's Laws

University of

In **purely inductive** circuit, the **current**

LAGS voltage by 90° or $\frac{\pi}{2}$ 2 radians

Phasors in Capacitive Circuit

You do

not need

to learn

calculus

here –

there is

an easy

way!

University of Nottingham UK | CHINA | MALAYSIA

Phasors in Capacitive Circuit

You do not need to learn calculus here – there is an easy way!

 $+$ − V ∠ ϕ _ν $I\angle\phi_i$

University of Nottingham IK | CHINA | MAI AYSIA

Convert capacitance to reactance

Solve using Ohm's & Kirchhoff's Laws

Ohm's Law:

 $V=IR$

 $+$ − V ∠ ϕ _ν $\mathbf{1}$ $j\omega$ C $I\angle\phi_i$

University of Nottingham IK | CHINA | MAI AYSIA

> But this needs to be generalised to incorporate complex "resistance" – **reactance** – symbol

$$
v = iX
$$

$$
V\angle\phi_v = I\angle\phi_iX
$$

$$
V\angle\phi_v = I\angle\phi_i \frac{1}{j\omega C}
$$

$$
Vj\omega C\angle\phi_v=I\angle\phi_i
$$

Now remember complex number multiplication:

 $[V\omega C\angle \phi_v] \times j1 = I\angle \phi_i$ $[V\omega C\angle \phi_v] \times 1\angle 90^\circ = I\angle \phi_i$ $V\omega C\angle(\phi_v + 90^\circ) = I\angle\phi_i$

Convert capacitance to reactance

Solve using Ohm's & Kirchhoff's Laws

Phasors in Capacitive Circuit

University of Nottingham UK | CHINA | MALAYSIA

current LAGS voltage by 90° or 2

current LEADS voltage by 90° or $\frac{\pi}{2}$ $\frac{\pi}{2}$ radians

The Real Circuit (Resistive + Reactive)

Universitu of Nottingham CHINA | MAI AYSIA

Impedance =
$$
Z = R + j\omega L + \frac{1}{j\omega C}
$$

It is practically impossible to have a purely reactive circuit – any inductor or capacitor would have some **parasitic resistance** values

Remember we discussed Impedance in the previous lecture!

Impedance indicates how much a load "impedes" or **hinders** the **flow of current** through itself on application of a **set amount of voltage** across it

Generalisation of Resistance – now incorporates AC circuits as well

Ohm's Law still applies!

Series

When two (or more) elements are connected together head-to-toe

Parallel

When two (or more) elements are connected head-to-head and toeto-toe

 $=$ \sum

 \overline{Z}_i

 \overline{z}

Series-Parallel

Combination of the both

Break the circuit up into series and parallel and solve individually

Example of Real Circuit

$$
Z_R = 10\Omega
$$

\n
$$
Z_L = j\omega L = j2\pi f L = j2 \times 3.14 \times 50 \times 20 \times 10^{-3} = j6.28\Omega
$$

\n
$$
Z_C = \frac{1}{j\omega C} = \frac{1}{j2\pi f C} = \frac{-j}{2 \times 3.14 \times 50 \times 50 \times 10^{-6}} = -j63.66\Omega
$$

The **three elements** are clearly in **series**

$$
Z = Z_R + Z_L + Z_C = 10 + j(6.28 - 63.69) = 10 - j57.38
$$

Applying **Ohm's Law**, we need to divide V by Z, remember, for division, we need complex numbers in **polar form**

Imaginary

University of Nottingham UK | CHINA | MALAYSIA

$$
|Z| = \sqrt{10^2 + 57.41^2} = \sqrt{3395.91} = 58.24
$$

When no info on phase offset for phase offset for voltage provided,
Applying Ohm's Law

$$
I = \frac{V}{Z} = \frac{20\angle 0^{\circ}}{58.24\angle -80.11^{\circ}} = 0.343\angle 80.11^{\circ}
$$

and $I = 0.343\angle 80.11^{\circ}$
and $I = 0.343\angle 80.11^{\circ}$

Learning Outcomes

- Fundamentals of **Alternating Current – or AC**
	- DC v AC circuit study waveforms a **function of time**!
	- **Sinusoidal** waveform voltage & current
	- **Complex Numbers**
- AC circuits
	- **Phasor** study simple way to solve time-varying circuits
	- Resistor, Inductor, Capacitor in phasor form **CIVIL**
	- **Reactance** Purely reactive circuits (just inductor/capacitor)
	- **Impedance** Resistance & Reactance
- Power in AC circuits
	- **Active** v **Reactive** v **Apparent** Power
	- **Power Factor**
	- **Resonance**

$$
\underline{x} = \sqrt{\frac{x_1^2 + x_2^2 + x_3^2 + \dots + x_n^2}{n}} = \sqrt{\frac{\sum x_i^2}{n}}
$$

- When dealing with AC applications, the amplitude of voltage or current is seldom used (we will see shortly why – power)
- Hence, AC ammeters/voltmeters are invariably calibrated for RMS value not peak/amplitude
- For all **sinusoidal waves**, the RMS value is $\frac{1}{\epsilon}$ $\frac{1}{2}$ = 0.707 times the amplitude
- It is much more convenient to make the **length of phasors** represent **RMS** instead of amplitude
- Going forward, we will deal with **only RMS values** when studying AC

Root Mean Square (RMS)

University of Nottınaham **CHINA | MAI AYSIA**

RMS value of
$$
V = V_{rms} = \frac{|V|}{\sqrt{2}} = 0.707V
$$

Power in Resistive Circuit

Instantaneous power

 $p(t) = v(t) \times i(t)$ $p(t) = V \cos \omega t \times I \cos \omega t$ $p(t) =$ VI $\overline{\mathbf{2}}$ $(1 + \cos 2\omega t) =$ I^2R $\overline{\mathbf{2}}$ $(1 + \cos 2\omega t) =$ V^2 $2R$ $(1 + \cos 2\omega t)$

Average power – integrate over full cycle

$$
P_{avg} = \int \frac{VI}{2} (1 + \cos 2\omega t)
$$

$$
P_{avg} = \frac{VI}{2} + 0
$$

$$
P_{avg} = \frac{V_m}{\sqrt{2}} \frac{I_m}{\sqrt{2}} = V_{rms} I_{rms}
$$

Proof (don't learn)

University of Nottingham UK | CHINA | MALAYSIA

$$
P_{avg} = \frac{1}{T} \int_{0}^{T} p(t) dt
$$

= $\frac{1}{T} \int_{0}^{T} v(t) i(t) dt$
= $\frac{1}{T} \int_{0}^{T} V \cos(\omega t) l \cos(\omega t) dt$
= $\frac{1}{T} \int_{0}^{T} \frac{VI}{2} \{1 + \cos(2\omega t)\} dt$
= $\frac{1}{T} \int_{0}^{T} \frac{VI}{2} dt + \frac{1}{T} \int_{0}^{T} \frac{V_m I_m}{2} \{\cos(2\omega t)\} dt$
= $\frac{VI}{2} - \frac{1}{\omega T} \int_{0}^{2\pi} \frac{V_m I_m}{2} \{\cos(2\omega t)\} d\omega t$
= $\frac{VI}{2} = V_{rms} I_{rms}$

$$
P_{avg} = \frac{V_m I_m}{\sqrt{2}} = V_{rms}I_{rms}
$$

Remember that power in DC circuits $P = V_{dc} \times I_{dc}$

Equivalently, the AC counterparts for V_{dc} is V_{rms} and I_{dc} is I_{rms}

That is why we always use the RMS value of voltage and current

Power in Inductive Circuit

Instantaneous power

$$
p(t) = v(t) \times i(t)
$$

$$
p(t) = V \cos \omega t \times I \sin \omega t
$$

$$
p(t) = \frac{VI}{2} \sin 2\omega t = \frac{\omega L I^2}{2} \sin 2\omega t = \frac{V^2}{2\omega L} \sin 2\omega t
$$

Energy absorbed from the source

Energy released to the source

Average power is ZERO!

 $\overline{2}$

 $2\omega C$

 $\overline{\mathbf{2}}$

Power in Capacitive Circuit

Average power is ZERO!

University of

 $P_{avg} = V_{rms}I_{rms} \cos \gamma$

 $cos \gamma = Power Factor = PF$

y is the **phase deviation** between voltage & current

PF tells us **what fraction of the current does useful work**

Is it phase **advance**/**delay**? *Does it matter?*

Energy released to the source

Apparent Power (symbol **S** unit **VA)**

University of Nottingham

 $S=V_{rms}I_{rms}$

- As the name suggests, this is the amount of power that appears to be flowing from source to load
- This is not the case as over a cycle, some (or all) of this power gets returned back to source
- As the power still flows (even if it is simply thrown back-forth between source and load), losses still occur
- A good circuit should have PF very close to unity
- However, AC equipment are rated for Apparent Power as it handles both used and unused power

Active Power (symbol **P** unit **W)**

 $P = V_{rms}I_{rms} \cos \gamma = V_{rms}I_{rms}PF = S \times PF$

• This is the real power transferred to the load

Reactive Power (symbol **Q** unit **VAr)**

 $P = V_{rms}I_{rms} \sin \gamma = V_{rms}I_{rms} \sin \gamma = S \sin \gamma$

• This is the purely unused power exchanged between the source and load

Active v Reactive v Apparent Power

University of Nottingham UK | CHINA | MALAYSIA

Energy absorbed from the source

Energy released to the source

 $L=20mH$

MM

- We have seen that inductor and capacitor **individually contribute** to delaying and advancing (respectively) the current waveform w/r/t the voltage
- When the inductance and capacitance value are equal (and opposite, inherently) they **nullify** each other – **Resonance**
- $Z_L = j\omega L$ **increases** with **increasing frequency**
- $Z_{\mathcal{C}} = \frac{1}{j\omega\mathcal{C}}$ decreases with **increasing frequency**
- We did this example earlier with frequency (50 Hz), we saw that the **overall circuit was capacitive** (i.e., capacitance was overpowering inductance and resultant current was 80° leading)
- What happens if we **increase the frequency**?
- There will come a frequency when **inductance just matches capacitance** this is **resonance**
- When this happens, you will be left with a **purely resistive circuit**, i.e., **overall impedance drops**!
- As you increase the frequency (from 50 Hz), you would see current rising gradually, then sharply at resonance, then again start falling

$$
= \frac{1}{\sqrt{20 \times 10^{-3} \times 50 \times 10^{-6}}} = \frac{1}{\sqrt{10^{-6}}}
$$

$$
\omega_{res} = 1000 \frac{rad}{s}
$$

Lets find out the current at resonant frequency and plot the phasor diagram

$$
Z_L = j\omega_{res}L = j \times 1000 \times 20 \times 10^{-3} = j20\Omega
$$

$$
Z_C = \frac{1}{j\omega_{res}C} = \frac{-j}{1000 \times 50 \times 10^{-6}} = -j20\Omega
$$

The **three elements** are clearly in **series**

$$
Z = Z_R + Z_L + Z_C = 10 + j(20 - 20) = 10\Omega
$$

Applying **Ohm's Law**

$$
I=\frac{V}{Z}=\frac{20\angle 0^{\circ}}{10\angle 0^{\circ}}=2\angle 0^{\circ}A
$$

2 A is significantly higher than 343 mA that we calculated at 50 Hz frequency

This is because the at resonance, inductive and capacitive impedances nullify each other

A coil is connected to a 50 V AC supply at 400 Hz. If the current supplied to the coil is 200 mA and the coil has a resistance of 60 Ω , determine the value of inductance.

Like most practical forms of inductor, the coil in this example has both resistance *and* reactance. We can find the impedance of the coil from:

$$
|Z| = \frac{V}{I} = \frac{50}{0.2} = 250\Omega
$$

$$
\text{Since}
$$
\n
$$
|Z| = \sqrt{R^2 + X^2}
$$
\n
$$
X = \sqrt{|Z|^2 - R^2}
$$
\n
$$
X = \sqrt{250^2 - 60^2} = 243\Omega
$$

Now since $XL = 2\pi fL$,

$$
L = \frac{X}{2\pi f} = \frac{243}{100\pi} = 0.097H
$$

An AC load has a power factor of 0.8. Determine the active power dissipated in the load if it consumes a current of 2 A at 110 V.

Since active power

 $P = PF \times V_{rms} \times I_{rms}$ $P = 0.8 \times 110 \times 2$ $P = 176 W$

A coil having an inductance of 150 mH and resistance of 250 Ω is connected to a 115 V 400 Hz AC supply. Determine:

(a) the power factor of the coil

(b) the current I_{rms} taken from the supply

(c) the power dissipated as heat in the coil.

(a) First we must find the reactance of the inductor, X_L , and the impedance, Z , of the coil at 400 Hz. (b)

 $X_L = 2\pi \times 400 \times 0.015 = 376 \Omega$

Thus

$$
Z = R + jX_L = 250 + j376 \Omega
$$

The power factor is

$$
\cos\!\gamma\,=\frac{R}{|Z|}
$$

Since

$$
|Z| = \sqrt{R^2 + X_L^2} = \sqrt{250^2 + 376^2} = 452 \text{ }\Omega
$$

Thus
$$
\cos \gamma = \frac{R}{|Z|} = \frac{250}{452} = 0.553
$$

$$
I_{rms} = \frac{V_{rms}}{|Z|} = \frac{115}{452} = 0.254 A
$$

(c) The power dissipated as heat is the active power $P = V_{rms}I_{rms} \cos \gamma = 0.254 \times 115 \times 0.553$ $P = 16.15 W$

- Fundamentals of **Alternating Current – or AC**
	- DC v AC circuit study waveforms a **function of time**!
	- **Sinusoidal** waveform voltage & current
	- **Complex Numbers**
- AC circuits
	- **Phasor** study simple way to solve time-varying circuits
	- Resistor, Inductor, Capacitor in phasor form **CIVIL**
	- **Reactance** Purely reactive circuits (just inductor/capacitor)
	- **Impedance** Resistance & Reactance
- Power in AC circuits
	- **Active** v **Reactive** v **Apparent** Power
	- **Power Factor**
	- **Resonance**

Attendance

