

University of Nottingham UK | CHINA | MALAYSIA

LECTURE 5

Digital Electronics 2

Electromechanical Devices MMME2051

Module Convenor – Surojit Sen

Illustrations are All Creative Commons if mentioned otherwise on the illustration

- Revision of Logic Gates
	- **Shaft Encoder**
- **Flip Flops**
	- Latch v Flip Flop
	- SR/JK/D/T Flip Flops
- Applications of Digital Circuit
	- **Series** v **Parallel** data & conversion (**Bit Shifter**)
	- Analog/Digital conversion (**R-2R Ladder** circuit)
	- **Flash Converter**

- Information in form of **discrete** symbols, or **levels**
- Variable can be only 1 out of a **finite number of options**

Humans interpret physical values in discrete levels

- **Alphabets**
- **Binary number**
- **Logic state**
- **Answer to the question** "*Are you* enjoying this module?"

Digital Analog

- Information in form of **continuous** and **real-valued levels**
	- Variable can be only 1 out of an **infinite number of options**
- **The physical values exist naturally in continuous spectrum levels**
- **Air pressure in this room**
- **Volume of my voice**
- **Battery voltage in your laptop**
- **Answer to the question** "*How much* are you enjoying this module?"

There are 26 alphabets in the English language – digital!

Numbers

Every number that we use, uses a distinct number of symbols (including the decimal point)

Let us look at a number in the "Decimal" number-format, the one that we have grown up with.

The same number in the Hexadecimal format will be

Weight of the Formula Student 2021 car is 12D kg $1 \times 16^2 = 256$ **2** $\times 16^1 = 32$ **D** $\times 16^0 = 13$ **MSB** – Most Significant Bit **LSB** – Least Significant Bit

How about in Binary?

This aligns with computer/software engineering – binary system used

Logic – TRUE/FALSE

We said that **301** (weight of the FS21 in kg) is represented in binary as

0 0 0 1 0 0 1 0 1 1 0 1

How is this actually done in reality?

This aligns with computer/software engineering – binary system used

Logic – TRUE/FALSE

We said that **301** (weight of the FS21 in kg) is represented in binary as

0 0 0 1 0 0 1 0 1 1 0 1

How is this actually done in reality?

This aligns with computer/software engineering – binary system used

Logic – TRUE/FALSE

We said that **301** (weight of the FS21 in kg) is represented in binary as

0 0 0 1 0 0 1 0 1 1 0 1

How is this actually done in reality?

This aligns with computer/software engineering – binary system used

Logic – TRUE/FALSE

We said that **301** (weight of the FS21 in kg) is represented in binary as

0 0 0 1 0 0 1 0 1 1 0 1

How is this actually done in reality?

Just the same way you do for decimal numbers!

4-bit Binary Number Range

We would call this a 4-bit binary number – it is made of 4 bits

Maximum number we can count up to for a binary number is given by $2^n - 1$

 1 byte $= 8$ bits

Modern computers use **32-bit** or **64-bit** numbers in its operating system

Remember the numeric data types you learnt in MATLAB last year?

- **Single** 4 bytes
- **Double** 8 bytes
- **Int8** 1 byte

This is an Integrated

Logic Gates

This is an Integrated

Don't need to study this for exam

- **Step 1 – Identify how many inputs there are**
- **Step 2 – Draw a truth table with as many number of rows as possible combinations of input bits**
- **Step 3 – Try each input combination in the logic gate**
- **Step 4 – Propagate the "logic" all the way to output**
- **Step 5 – Fill the truth table row by row**

Total inputs = 2

Total combinations possible = $2^n = 4$

4 rows in truth table

Imagine you are designing a circuit to monitor a digital thermometer embedded in a nuclear reactor

University of Nottingham UK | CHINA | MALAYSIA

Example 4

- You want to automatically shut off the reactor when the cooling fluid rises above 50 ° C
- It would also be bad if the coolant froze – shut down the reactor!
- Thermometer gives a 3bit binary output in 10 °C steps –
	- $2^3 = 8$ levels
	- Count from 0 to 2^3 $1 = 7$
	- **0 ° C** to **80 ° C** range of output

- S=1 (as we said solving for HI) if:

 $\boldsymbol{O}_1 = \boldsymbol{0}$ AND $\boldsymbol{O}_2 = \boldsymbol{0}$ AND $\boldsymbol{O}_3 = \boldsymbol{0}$ **OR**
- $\boldsymbol{0}_1 = \boldsymbol{1}$ and $\boldsymbol{0}_2 = \boldsymbol{1}$ and $\boldsymbol{0}_3 =$
- $0_1 = 1$ AND $0_2 = 1$ AND $0_3 = 1$

OR

Example 5

- Revision of Logic Gates
	- **Shaft Encoder**
- **Flip Flops**
	- Latch v Flip Flop
	- SR/JK/D/T Flip Flops
- Applications of Digital Circuit
	- **Series** v **Parallel** data & conversion (**Bit Shifter**)
	- Analog/Digital conversion (**R-2R Ladder** circuit)
	- **Flash Converter**

How does the controller know when to start/stop the motor controlling the robotic arm joint?

A sensor is required that gives the **accurate position of the joint**

A **Shaft Encoder** can do that

Shaft encoder can provide:

- **Angular Position**
- **Angular Speed**
- **Direction**

This is the most basic form of shaft encoder. It has some inherent problems though:

- **Only detects speed**
- **Not position**
- **Not direction of motion!**

Shaft Encoder

This is a motor **position encoder**

This solves all the problems in the previous design as it gives the position information

The **speed** and **direction** can be "figured out" programmatically

How do we increase the angular resolution? **Yes, add more bits!** Say there are n bits Angular resolution= $\frac{360^{\circ}}{37}$ 2^n For 8-bit encoder, angular resolution= $\frac{360^{\circ}}{28}$ 2 8 = 1.406°

This is an **incremental encoder**

Notice this has two incremental pulses **A** and **B** that are **90° phase shifted** from each other. This allows to detect **direction** of rotation

The third bit is the **Z** pulse which triggers once every revolution, indicating a **single revolution** has happened

- Revision of Logic Gates
	- **Shaft Encoder**
- **Flip Flops**
	- Latch v Flip Flop
	- SR/JK/D/T Flip Flops
- Applications of Digital Circuit
	- **Series** v **Parallel** data & conversion (**Bit Shifter**)
	- Analog/Digital conversion (**R-2R Ladder** circuit)
	- **Flash Converter**

Memory in computers

It is essentially a really big and complex electronic circuit that **processes binary information** using **logical circuits**

Logical circuit (as the name suggests) uses logic (*if "A is happening" then "make B happen"*) to arrive at decisions

The basic building block of logical circuits is a **logic gate**

There are mainly 3 kinds of gates:

AND – outputs HI if all inputs are HI

OR – outputs HI if any input is HI

NOT – inverts the bi (HI becomes LO and LO becomes HI)

We studied about computers in the topic on Logic Gates last week

Can we make Computers **SMARTER?**

Yes, by giving it the power to **REMEMBER!**

With MEMORY, the computer can now **make decisions**, and **store** them!

Data (decision is also data) in a computer is in form of 1s and 0s. So we need a circuit that can remember the value of a bit (0 or 1, LO or HI)

We use a **Latch** to do this

B_b

Memory in computers

Q Let us take an **OR gate**

Let us "**feed back**" output Q as an input to the gate

Once Q is **"set"** HI, it will stay HI no matter what input B we apply – **memory!**

We can **"reset"** this "**memory block**" by breaking the feedback using some form of switch

When feedback loop is broken, **output Q simply follows input B**

Closing the feedback loop again resumes the **latching functionality**

SR ("Set Reset") Latch

A signal is called "Active High" when the physical voltage on the port/wire/contact is **high** (e.g., 5V, 3.3V, 12V depending on the application) when the signal is **active**

Similarly, a signal is called "Active Low" when the physical voltage on the port/wire/contact is **low** (e.g., 0V) when the signal is **active**

The concept of "Active" is purely for human interpretation. Say you name a signal "Set" (like the SR Latch). In the **NOR implementation**, if you want to "Set" the latch, you apply a High voltage to the S port.

In case of **NAND implementation**, if you want to "Set" the latch, you apply a Low voltage to the S port.

As the name suggests, an Enable input simply gives you the option to activate the Latch Set/Reset functionality

D ("Delay") Gated Latch

A Computer always works with a clock

A clock signal is simply a **square waveform** of a particular frequency – **faster clock** means **faster processing** power

Propagation & **processing** of digital signals are expected to **happen at every clock pulse**

Clock pulse can be the **rising edge of the clock signal**

This is called Edge-Triggering

"Edge Triggered" D Flip-Flop

$$
Q_{next} = T \oplus Q = T\overline{Q} + \overline{T}Q
$$

$$
Q_{next} = T \oplus Q = T\overline{Q} + \overline{T}Q
$$

 (discuss later)

 $Q_{next} = J\overline{Q} + \overline{K}Q$

Universal Flip-Flop

Let us revise how to operate the JK Flip Flop

Let us revise how to operate the JK Flip Flop

CHINA | MAI AYSIA

What is a "Latch" and how is it different from "Flip-Flop"?

Latch v Flip-Flop Does not have any CLOCK or ENABLE signal – *it is always enabled!* Also called: • **Level-triggered** Needs a periodic CLOCK signal – *it activates on the clock pulse rising edge* Also called: • **Edge-triggered**

- **Asynchronous**
- **Transparent**
- **"Latch"**
- **Synchronous**
- **Opaque**
- **"Flip Flop"**

Learning Outcomes

- Revision of Logic Gates
	- **Shaft Encoder**
- **Flip Flops**
	- Latch v Flip Flop
	- SR/JK/D/T Flip Flops
- Applications of Digital Circuit
	- **Series** v **Parallel** data & conversion (**Bit Shifter**)
	- Analog/Digital conversion (**R-2R Ladder** circuit)
	- **Flash Converter**

Series v Parallel Data

We studied **Shaft Encoder** which uses *n*-bits to indicate the angular position

This n -bit "word" requires n individual copper **wires** to transmit the information

Could we save money here and transmit the same information over **just one wire**?

Yes we can! We use what is called:

Serial Communication

Read about this absolute encoder – this does not use binary code. Instead, it uses **Gray Code.** The gray code is similar to binary code, but with every "code change", only a single bit inverts. This feature is used in error-checking. [https://electronics.stackexchange.com/questions/15481/how](https://electronics.stackexchange.com/questions/15481/how-does-a-ball-mouse-know-the-direction)[does-a-ball-mouse-know-the-direction](https://electronics.stackexchange.com/questions/15481/how-does-a-ball-mouse-know-the-direction)

Series v Parallel Data

Time-multiplexing

At every clock pulse, the output signal changes (or "shifts") to the next bit in the sequence

Series v Parallel Data

Disadvantage of Time Multiplexing

Time resolution gets divided!

If the encoder is producing a new 10-bit word every $1ms$, and your processor clock speed is also $1ms$, you need to sample-and-hold the word at the start, spend $10ms$ to produce the 10 bits sequentially, and then sample-and-hold the next 10-bit word

Effective time resolution of the encoder is now $10ms$ (even though the encoder has a resolution of $1ms$)

At every clock pulse, the output signal changes (or "shifts") to the next bit in the sequence

Bit Shifter

General Schematic of a Bit Shifter

General Schematic of a Bit Shifter

At every rising edge of the clock pulse, the bit gets shifted to the right Otherwise, the JK flip flops (arranged in D flip flop configuration) holds their values

43

ם ו

University of

Nottingham UK | CHINA | MALAYSIA

43

ם ו

University of

Nottingham UK | CHINA | MALAYSIA

43

ם ו

University of

Nottingham UK | CHINA | MALAYSIA

帶

懵

慌

帶

Bit Shifter – Parallel-to-Serial Conversion

University of Nottingham UK | CHINA | MALAYSIA

Parallel-to-serial conversion process is bit more detailed (we will not cover this in the module)

Multiplexer does a **bit-shift operation** at every clock pulse

Final output is a *n*-bit word

- Revision of Logic Gates
	- **Shaft Encoder**
- **Flip Flops**
	- Latch v Flip Flop
	- SR/JK/D/T Flip Flops
- Applications of Digital Circuit
	- **Series** v **Parallel** data & conversion (**Bit Shifter**)
	- Analog/Digital conversion (**R-2R Ladder** circuit)
	- **Flash Converter**

Typical application of inter-conversion between analog and digital signals

Air pressure waves gets picked up by a diaphragm in the mic

Diaphragm motion produces a small analog voltage signal proportional to the sound pressure waveform

User does all kinds of processing to the sound digitally

DAC produces an analog signal that can be read by speakers/amplifiers

Speakers convert the analog voltage signal into sound waves again

Digitalisation is simply recording **discreet values** at **discreet time intervals**

A **faster clock** would allow **finer divisions** on the **time** axis

A **larger word length** (*n*-bit) would allow **finer divisions** on the **amplitude** axis

What is Resolution?

Let us try to see how the R-2R Ladder circuit works

Simplifying this circuit:

Let us do another example, but with a different bit activated!

Again, let us simplify this circuit:

Digital-to-Analog Converter (ADC)

University of Nottingham UK | CHINA | MALAYSIA

R-2R Ladder Circuit

Now, as you can see, we cannot easily use the series/parallel rules to simplify this circuit further

Time to break out the Kirchhoff's Rules!

R-2R Ladder Circuit $\bm{I_1}$ I_2 V_{out} **MWW** \boldsymbol{R} 0_A $\left|\sum_{i=1}^{n} Z_i R_i\right|$ I_1 \leqslant 2R I_2 D_4 D_3 D_2 I_1 I_2 **I** batt e.g., if the digital word is 0100, then: • D_4 is OFF I_{batt} D_3 is ON V_{MAX} D_2 is OFF

I batt

• D_1 is OFF

University of

Kirchhoff's Current Law

 $I_{batt} = I_1 + I_2$

Current Divider Rule – Current in a parallel branch divides as per the conductance offered by that branch as a fraction of the overall conductance

Digital-to-Analog Converter (ADC)

University of Nottingham LIK | CHINA | MAI AYSIA

Kirchhoff's Current Law

$$
I_{batt}=I_1+I_2
$$

Current Divider Rule – Current in a parallel branch divides as per the conductance offered by that branch as a fraction of the overall conductance

$$
G_1 = \frac{1}{R + 2R} = \frac{1}{3R}
$$

$$
G_2 = \frac{1}{2R}
$$

University of

R-2R Ladder Circuit $\bm{I_1}$ I_2 V_{out} **MWW** \boldsymbol{R} 0_A $\left|\sum_{i=1}^{n} Z_i R_i\right|$ I_1 \leqslant 2R I_2 D_4 D_3 D_2 I_1 I_2 **I** batt e.g., if the digital word is 0100, then: • D_4 is OFF I_{batt} D_3 is ON V_{MAX} D_2 is OFF • D_1 is OFF *I* batt

Kirchhoff's Current Law

 $I_{batt} = I_1 + I_2$

Current Divider Rule – Current in a parallel branch divides as per the conductance offered by that branch as a fraction of the overall conductance

$$
I_1 = \frac{\frac{1}{3R}}{\frac{1}{3R} + \frac{1}{2R}} I_{batt} = \frac{\frac{2}{6R}}{\frac{2}{6R} + \frac{3}{6R}} I_{batt}
$$

$$
I_1 = \frac{2}{5} I_{batt}
$$

Digital-to-Analog Converter (ADC)

University of Nottingham K | CHINA | MAI AYSIA

The circuit has been simplified:

- The positive voltage branch (red) has been moved to the right side
- The grounded branches (black) have been moved to the left
- We can ignore V_{out} for the moment, as we are calculating the equivalent resistance – as there is no current flowing in/out of the V_{out} branch, it is effectively an infinite resistance,

Digital-to-Analog Converter (ADC)

Universitu of Nottingham K | CHINA | MAI AYSIA

The circuit has been simplified:

- The positive voltage branch (red) has been moved to the right side
- The grounded branches (black) have been moved to the left
- We can ignore V_{out} for the moment, as we are calculating the equivalent resistance – as there is no current flowing in/out of the V_{out} branch, it is effectively an infinite resistance,

The circuit has been simplified:

- The positive voltage branch (red) has been moved to the right side
- The grounded branches (black) have been moved to the left
- We can ignore V_{out} for the moment, as we are calculating the equivalent resistance – as there is no current flowing in/out of the V_{out} branch, it is effectively an infinite resistance,

Now we can extrapolate the logic

When D_4 is ON

 $\mathbf{1}$

 $\mathbf{2}$

 V_{MAX}

 $V_{out} =$

Now we can extrapolate the logic

Now we can extrapolate the logic

Now we can extrapolate the logic

University of Nottingham UK | CHINA | MALAYSIA

R-2R Ladder Circuit

If there are n branches in the R-2R Ladder circuit:

$$
V_{out} = \frac{1}{2^n} V_{MAX}
$$

With multiple switches on at the same time, the individual contribution of each branch gets added to V_{out}

$$
V_{out} = \sum D_n \frac{1}{2^n} V_{MAX}
$$

Where D_n is the bit value, 1 or 0

A **faster clock** would allow **finer divisions** on the **time** axis

A **larger word length** (*n*-bit) would allow **finer divisions** on the **amplitude** axis

Analog-Digital-Converter (ADC)

The Second

University of
Nottingham

UK | CHINA | MALAYSIA

Analog-Digital-Converter (ADC)

University of Nottingham UK | CHINA | MALAYSIA

Comparator

Compares the input voltages

If:

- $V_+ > V_-$ then $V_{comp} = 1$
- $V_+ < V_-$ then $V_{comp} = 0$

This is a special form of Operational Amplifier (or Op-Amp)

We will cover this in next lecture

Analog-Digital-Converter (ADC)

University of Nottingham LIK | CHINA | MAI AYSIA

Notice that this takes up to 2^n clock pulses to do the equivalent of input analog voltage V_{in} conversion – often this is too slow for some applications

Computer

- Increases the R-2R ladder analog voltage output by counting up in binary
- Waits for comparator output to turn 1
- Records the binary state as the digital

Voltage Divider

Notice we have divided the full scale voltage into 4 divisions

In order to convert this into a binary number, we should aim to make this an exponent of 2

2^n

There is no necessity to do that – you will end up with an under -utilised binary word

e.g., say you have 6 divisions

You would need a 3 -bit word which would have given you 8 divisions

Typical application of inter-conversion between analog and digital signals

Air pressure waves gets picked up by a diaphragm in the mic

Diaphragm motion produces a small analog voltage signal proportional to the sound pressure waveform

ADC soundcard in the PC converts the analog waveform into digital signal R-2R DAC Flash Converter DAC

User does all kinds of processing to the sound digitally

DAC produces an analog signal that can be read by speakers/amplifiers

Speakers convert the analog voltage signal into sound waves again

- Revision of Logic Gates
	- **Shaft Encoder**
- **Flip Flops**
	- Latch v Flip Flop
	- SR/JK/D/T Flip Flops
- Applications of Digital Circuit
	- **Series** v **Parallel** data & conversion (**Bit Shifter**)
	- Analog/Digital conversion (**R-2R Ladder** circuit)
	- **Flash Converter**

Attendance

