

University of Nottingham UK | CHINA | MALAYSIA

LECTURE 9

DC Motors & Boolean Algebra

Electromechanical Devices MMME2051

Module Convenor – Surojit Sen

Illustrations are All Creative Commons if mentioned otherwise on the illustration

- DC Motor
	- **Revision** of all motors studied so far Induction, Stepper
	- **Operation** of a **Simple DC Motor**
	- **Why** use a DC Motor?
- **Boolean Algebra**
	- **Revision of Digital Electronics**
	- **Addition** (OR), **multiplication** (AND), **complement** (NOT)
	- **Laws**

https://axljoann.blogspot.com/2021/05/3-phase-induction-motor-hitachi-three.html https://medium.com/@abhisheksingh73017/how-an-induction-motor-starts-real-answer-from-an-engineer-65f2fd7fa5b1

The speed of rotation is called "synchronous speed" which is nothing but the 3-phase AC frequency!

$$
n_{s}(Hz) = f \text{ or } n_{s}(RPM) = 60 \times f
$$

Left-Hand Rule (Motors)

A current-carrying conductor in a magnetic field experiences a force/thrust

Right-Hand Rule (Generators)

A conductor moving in a magnetic field generates a voltage across itself (current produced if circuit was to be completed)

University of Nottingham CHINA | MAI AYSIA

- Rotating **Magnetic Field** produced by the stator is continually **cutting a conductor**
	- **Synchronous** Speed = Speed of the **rotating magnetic field**, i.e., **stator** field, i.e., **input supply**
- An **EMF gets generated** (RH Rule). In a squirrel cage rotor, everything is shorted! Hence, **current flows**
- Now the conductor is a **current-carrying** conductor. Current-carrying conductor experiences a **force** in the **magnetic field** (LH Rule)
- **Rotor needs to slip** (allowing the cutting) to produce any torque
- **Higher slip = higher torque**

https://en.engineering-solutions.ru/motorcontrol/induction3ph/

$$
T = \frac{3p}{2\pi f} \times \frac{V^2 a s}{X_R (a^2 + s^2)}
$$

- T –Torque in star-connected motor
- p Pole pairs per phase
- f Supply frequency
- $V -$ Supply phase voltage
- $a = \frac{R_R}{V}$ $\boldsymbol{X_R}$ – Resistance-to-reactance ratio of rotor
- $S = \frac{n_s n}{n}$ $\frac{s-n}{n_s}$ – Per-Unit slip (\mathbf{n}_s – Sync Speed)
- $n -$ Actual speed of rotor (same unit as sync speed)
- X_R Reactance of Rotor (as seen from stator referred impedance – remember Transformer?)

- No-load speed = synchronous speed
- Torque ∞ slip (approx.) for small torques
- Torque-speed characteristic has "hump" at $s = \frac{R_R}{V}$ X_R^{\prime} $= a$
- Under running conditions slip is small e.g. 5%
- By setting $\frac{dT}{ds}=0$, can show that maximum ("pull-out") torque is

$$
T_{max} = \frac{3p}{4\pi f} \frac{V^2}{X_R}
$$

Motor stalls if load torque T reaches T_{max}

- Rotor is (usually) **permanently magnetised**
- Attracted to a **different pair of poles at each step**
- Moves from **pole to pole** as each pair of poles is energised
- So it moves in a **series of steps**

You can imagine, a motor design on left would make the motor spin in a **jerky** fashion. In real world, the motor looks like below. Each "**tooth**" is a magnet pole.

Stepper Motor

H-Bridge

An H-Bridge is a circuit that allows polarity inversion across a load – basically allows current to flow in both direction by the application of switches (transistors) or diodes

Universally used circuit for **Rectification** and **Motor Control**

- **Sequential logic** (interprets "step" signals)
- **Combinational logic** (interprets "direction")
- **Transistors** (these are the switches which connect and disconnect the windings)

"Simple" DC Motor are one of the oldest motor inventions that are still being used to this day – they are very simple from an engineering point of view

They are largely superseded now by "**electronically commutated**" DC Motors (hence the usage of "Simple" in this design)

Simple DC Motor

University of Nottingham UK | CHINA | MALAYSIA

"Simple" DC Motor

The stator is either **permanent magnet** or **wire-wound with DC voltage applied**

Effect is the same – constant magnetic field

Remember Induction motor stator? It is very similar, but much simpler:

- **No AC**
- **Only single phase**

"Simple" DC Motor

The rotor is simply a **coil** with current flowing through it via **another** DC voltage supply

Interesting bit here is the **commutator/brush pair** – this allows to flip the voltage polarity every half revolution

Hence, the current flow direction also flips

Now let us see how the motor operates!

Hint: Fleming's LH and RH Rules.

Simple DC Motor

https://www.youtube.com/watch?v=LAtPHANEfQo

Simple DC Motor

University of Nottingham IK | CHINA | MAI AYSIA

"Simple" DC Motor

Fleming's Left Hand Rule says a currentcarrying conductor in a magnetic field experiences force/thrust

Lorentz Law says:

 $F = B.I_0l$

Torque is a function of the force and radius (which is fixed):

$\tau = r \times F$

Hence, Torque is linearly proportional to the Armature Current:

 $\tau = K I_a$

"Simple" DC Motor

Fleming's Right Hand Rule says a moving conductor in a magnetic field generates a voltage across it

Simple DC Motor

Lorentz Law says:

$$
E_b=B\times v l
$$

Angular velocity is linearly related to speed:

$$
\omega=\frac{v}{r}
$$

• Hence, Back EMF is linearly proportional to the Angular Speed:

$$
E_b=K\omega
$$

"Simple" DC Motor

So the two equations to pay heed to are:

 $\tau = K I_a$

 $E_h = K \omega$

You can find out mathematically (using the original equations in previous two slides) that the value of K is same in both equations!

Equivalent electrical circuit

can be used to visualise how the motor works

$$
V_{in} = E_b + I_a R_a
$$

$$
V_{in} = K\omega + \frac{\tau}{K} R_a
$$

We can also plot the Torque-Speed curve of the "Simple" DC motor using this equation

University of Nottingham UK | CHINA | MALAYSIA

Simple DC Motor

At zero speed (stall):

$$
V_{in} = K(0) + \frac{\tau}{K} R_a
$$

$$
\tau = \frac{K}{R_a} V_{in}
$$

At zero torque (no load):

$$
V_{in} = K\omega + \frac{(0)}{K}R_a
$$

$$
\omega = \frac{V_{in}}{K}
$$

"Simple" DC Motor

We can also plot the Torque-Speed curve of the "Simple" DC motor using this equation

University of Nottingham UK | CHINA | MALAYSIA

Simple DC Motor

At zero speed (stall):

$$
V_{in} = K(0) + \frac{\tau}{K} R_a
$$

$$
\tau = \frac{K}{R_a} V_{in}
$$

At zero torque (no load):

$$
V_{in} = K\omega + \frac{(0)}{K}R_a
$$

$$
\omega = \frac{V_{in}}{K}
$$

"Simple" DC Motor

Worked Example 1

A motor has a constant of $0.025 \frac{Vs}{rad}$ and an armature **resistance of 0.5** Ω **. Find the torque which is produced when supplying the motor from 16 V and running at a speed of 5000 RPM.**

 $V_{in} = E_h + I_a R_a = K \omega + I_a R_a$ $I_a =$ $V_{in} - K\omega$ R_a

> $V_{in} = 16 V$ $K = 0.025$

 $R_a = 0.5 \Omega$

 $n = 5000$ RPM

So,

$$
\omega = 2\pi \times \frac{5000}{60} = 523.6 \frac{rad}{s}
$$

 $I_a =$ $V_{in} - K\omega$ R_a $I_a =$ $16 - 0.025 \times 523.6$ 0.5 $I_q = 5.82 A$

> $\tau = K \times I_{\alpha}$ $\tau = 0.025 \times 5.82$ $\tau = 0.1455$ Nm

And,

Here,

Worked Example 2

A DC motor (the "Torpedo 850") is used for small electric drills and model boats. Its no-load speed (ignore frictional effects) is given as 9778 RPM when running from 12 V. It draws a current of 10.8 A at 12 V at a speed of 8311 RPM.

Find motor constant and armature resistance.

Find current, speed and mechanical power output at 12 V and torque of 0.05 Nm .

$$
V_{in} = E_b + I_a R_a = K\omega + I_a R_a
$$

Motor constant: assume that under no-load condition there really is no torque so current is zero, so:

$$
V_{in}=E_b=K\omega
$$

$$
K = \frac{V_{in}}{\omega} = \frac{12}{2\pi \times \frac{9778}{60}}
$$

$$
K=0.0117\frac{Vs}{rad}
$$

At 8311 RPM, current is 10.8 A

 R_a

$$
V_{in} = K\omega + I_a R_a
$$

\n
$$
R_a = \frac{V_{in} - K\omega}{I_a}
$$

\n
$$
= \frac{12 - 0.0117 \times 2\pi \times \frac{8311}{60}}{10.8}
$$

\n
$$
R_a = 0.168 \Omega
$$

Worked Example 2

 $\tau = K I_a$

 τ

 \boldsymbol{K}

0.05

0.0117

 $I_q = 4.27 A$

 $I_a =$

 $I_a =$

A DC motor (the "Torpedo 850") is used for small electric drills and model boats. Its no-load speed (ignore frictional effects) is given as 9778 RPM when running from 12 V. It draws a current of 10.8 A at 12 V at a speed of 8311 RPM.

Find motor constant and armature resistance.

Find current, speed and mechanical power output at 12 V and torque of 0.05 Nm . At 8311 RPM, current is 10.8 A

 $V_{in} = K\omega + I_{\alpha}R_{\alpha}$ $\omega =$ $V_{in} - I_a R_a$ \boldsymbol{K} $\omega =$ 12 − 4.27 × 0.168 0.0117 $\omega = 964$ rad \boldsymbol{s} $\omega = 9205$ RPM

Mechanical output

 $W = \tau \omega = 0.05 \times 964 = 48.2 W$

- DC Motor
	- **Revision** of all motors studied so far Induction, Stepper
	- **Operation** of a **Simple DC Motor**
	- **Why** use a DC Motor?
- **Boolean Algebra**
	- **Revision of Digital Electronics**
	- **Addition** (OR), **multiplication** (AND), **complement** (NOT)
	- **Laws**

- Information in form of **discrete** symbols, or **levels**
- Variable can be only 1 out of a **finite number of options**

Humans interpret physical values in discrete levels

- **Alphabets**
- **Binary number**
- **Logic state**
- **Answer to the question** "*Are you* enjoying this module?"

Digital Analog

- Information in form of **continuous** and **real-valued levels**
	- Variable can be only 1 out of an **infinite number of options**
- **The physical values exist naturally in continuous spectrum levels**
- **Air pressure in this room**
- **Volume of my voice**
- **Battery voltage in your laptop**
- **Answer to the question** "*How much* are you enjoying this module?"

There are 26 alphabets in the English language – digital!

Numbers

Every number that we use, uses a distinct number of symbols (including the decimal point)

Let us look at a number in the "Decimal" number-format, the one that we have grown up with.

The same number in the Hexadecimal format will be

How about in Binary?

This aligns with computer/software engineering – binary system used

Logic – TRUE/FALSE

We said that **301** (weight of the FS21 in kg) is represented in binary as

0 0 0 1 0 0 1 0 1 1 0 1

How is this actually done in reality?

This aligns with computer/software engineering – binary system used

Logic – TRUE/FALSE

We said that **301** (weight of the FS21 in kg) is represented in binary as

0 0 0 1 0 0 1 0 1 1 0 1

How is this actually done in reality?

This aligns with computer/software engineering – binary system used

Logic – TRUE/FALSE

We said that **301** (weight of the FS21 in kg) is represented in binary as

0 0 0 1 0 0 1 0 1 1 0 1

How is this actually done in reality?

This aligns with computer/software engineering – binary system used

Logic – TRUE/FALSE

We said that **301** (weight of the FS21 in kg) is represented in binary as

0 0 0 1 0 0 1 0 1 1 0 1

How is this actually done in reality?

Just the same way you do for decimal numbers!

4-bit Binary Number Range

We would call this a 4-bit binary number – it is made of 4 bits

Maximum number we can count up to for a binary number is given by $2^n - 1$

 1 byte $= 8$ bits

Modern computers use **32-bit** or **64-bit** numbers in its operating system

Remember the numeric data types you learnt in MATLAB last year?

- **Single** 4 bytes
- **Double** 8 bytes
- **Int8** 1 byte

This is an Integrated

Logic Gates

This is an Integrated

Don't need to study this for exam

- **Step 1 – Identify how many inputs there are**
- **Step 2 – Draw a truth table with as many number of rows as possible combinations of input bits**
- **Step 3 – Try each input combination in the logic gate**
- **Step 4 – Propagate the "logic" all the way to output**
- **Step 5 – Fill the truth table row by row**

Total inputs = 2

Total combinations possible = $2^n = 4$

4 rows in truth table

Imagine you are designing a circuit to monitor a digital thermometer embedded in a nuclear reactor

University of Nottingham UK | CHINA | MALAYSIA

Example 4

- You want to automatically shut off the reactor when the cooling fluid rises above 50 ° C
- It would also be bad if the coolant froze – shut down the reactor!
- Thermometer gives a 3bit binary output in 10 °C steps –
	- $2^3 = 8$ levels
	- Count from 0 to 2^3 $1 = 7$
	- **0 ° C** to **80 ° C** range of output

- S=1 (as we said solving for HI) if:

 $\boldsymbol{O}_1 = \boldsymbol{0}$ AND $\boldsymbol{O}_2 = \boldsymbol{0}$ AND $\boldsymbol{O}_3 = \boldsymbol{0}$ **OR**
- $\boldsymbol{0}_1 = \boldsymbol{1}$ and $\boldsymbol{0}_2 = \boldsymbol{1}$ and $\boldsymbol{0}_3 =$
- $\bm{0}_1 = 1$ AND $\bm{0}_2 = 1$ AND $\bm{0}_3 = 1$

OR

Example 5

Boolean Algebra is like regular algebra – but instead of numbers, it operates with logical variables true and false, also denoted by 1 and 0 respectively

This is used to simplify logical circuits mathematically, i.e., instead of solving a complicated digital logic circuit via propagation of signal, you can simplify it mathematically using certain laws

There are three operators:

George Boole, self-taught English mathematician wrote the book *The Laws of Thoughts* (1854) and introduced Boolean Algebra

Boolean Algebra

F

University of Nottingham UK | CHINA | MALAYSIA

$$
\begin{array}{ccc}\n\text{NOT} & A & \longrightarrow & Q \\
\text{A} & \longrightarrow & Q\n\end{array}
$$

$$
Q=A.B=A\wedge B
$$

 $Q = A + B = A \vee B$

$$
Q=A'=\neg A=\overline{A}
$$

Boolean Algebra

 $Q = A.B' + A'.B$ $Q = A \cdot \overline{B} + \overline{A} \cdot B$

 $S = O'_1$. O'_2 . O'_3 + O_1 . O_2 . O'_3 + O_1 . O_2 . O_3

- DC Motor
	- **Revision** of all motors studied so far Induction, Stepper
	- **Operation** of a **Simple DC Motor**
	- **Why** use a DC Motor?
- **Boolean Algebra**
	- **Revision of Digital Electronics**
	- **Addition** (OR), **multiplication** (AND), **complement** (NOT)
	- **Laws**

Attendance

