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10 Thick-Walled Cylinders

Learning Summary

1. Appreciate the difference between the stress analysis of thin and thick cylinders
(knowledge)

2. Be able to derive the equilibrium equations for a solid body (thick cylinder)
(comprehension);

3. Understand the derivation of Lame’s equations comprehension);

4. Determine the stresses caused by shrink fitting a cylinder onto another (application);

5. Be able to include ‘inertia’ effects into the thick cylinder equations to calculate the

stresses in a rotating disc (application).

10.1 Introduction

Thick cylinders differ from thin cylinders in that the variation of stress through the wall
thickness is significant when subjected to internal and/or external pressure whereas for
thin cylinders, the variation of stress is negligible. Figure 10.1 presents the cases of thick
cylinders with closed ends and with pistons. For closed-ended, internally pressured
cylinders the axial force on the inside of the end closures produces a distribution of axial
stress in the cylinder while for cylinders with pistons the resultant axial force in the cylinder

and hence the axial stress also are zero.
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Closed ends
<€ mmpmm@
bbb
with pistons
EARRAREEE

LLLLiLlbLLy

Figure 10.1: Thick cylinders subjected to internal pressure

10.2 Analysis of thin cylinders (recap)

For an internally pressurised thin cylinder situation, it is reasonable to assume that the
variations of the stresses through the wall thickness are negligible resulting in the problem
being statically determinate, i.e. expressions for the stresses can be obtained by

consideration of equilibrium alone, as shown in Figure 10.2 and described below.
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Figure 10.2: Hoop and axial stress in thin cylinders
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205tl = pdl
pd PR

9% = T ¢ (30)
md?
O'aﬂ.'dt:pT
pd PR

% =4 T ot (31)

10.3 Analysis of thick cylinders

Thick cylinder problems are statically indeterminate. Therefore, in order to obtain a
solution it is necessary to consider equilibrium, compatibility and the material behaviour

(stress-strain relationship).

Assumptions

(i) Plane transverse sections remain plane (this is true remote from the ends).
(ii) Deformations are small.

The material is linear elastic, homogenous and isotropic.
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10.3.1 Equilibrium
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or = radial stress
o = hoop stress

oz =axial stress

Figure 10.3: Internally pressurized thick cylinder and FBD of an element of
material within the cylinder

(O‘r + d;r 5}”}(1’ +9r)00% = 0, (ro0%) + 209 (drdx) sin(éj
7 Z

For small 66, sin (%9) ~ %9 therefore:

dd"r 5r(r+05r)30 = 6,180+ 0,510

r

o (r+6r)50+

Department of Mechanical, Materials & Manufacturing Engineering

The University of Nottingham



MMME2053 — Mechanics of Solids — Thick-Walled Cylinders | 77

do do
ro,.+0o,0r+r—ror+—= 5 =0,.r+0gor
dr dr

do,

As 6r — 0, or’ =0

dr

Gp—0.=r (32)

r

10.3.2 Compatibility

Figure 10.4: Initial and deformed shape of an element of material

_ extension
original length

Hoop strain, sy = (r +u)00 = rof

ro0 _u (33)
r
(u + @ 51’) —u p y
Radial strain, &, = r _au (34)
or dr
Axial strain, ¢. =constant (35)

10.3.3 Material behaviour
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Generalised Hooke's Law (linear elastic and isotropic)

1

g =E(69 —v(o, +0;)) (36)
|

&r = E(Gr —Vv(og +03)) (37)
1

&z :E(Uz —Vv(o, +0g)) (38)

Equations (3) to (9) have seven unknowns, i.e. u, ov, or, 0z, &, & and &, which are all

functions of r, po, pi, Ro, Ri, v and E.

Substituting u = rgg from Eq. (4) into Eq. (5) gives
d
&, =—(re
: dr( 0)

de
ie. &, =&p + r=0 (a)

dr

Using Eq. (7) and Eq. (8) in Eq. (a) gives

1 1 r(do do do
E(O-V_V(GH+GZ)):E(O-(9_V(O-7‘+O-Z))+E( dre_v drr_v drzj

do do do
ie(1+v)o,. =(1+v)o, + 0 _py—r _py—= b
ie(l1+v)o, =(1+v)o, +r > " VL (b)

Using Eq. (6), d;Z =0, then Eq. (9) gives:
r

~do, do,
) =y +v
dr dr dr

Substituting (c) in (b)

d
(1+v)o. =(1+v)o,+r do- —rv—L—py Ly L
r
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90 _ (14199
r dr

ie(1+v)o, =(1+v)o, +r(1-v?)

do,

_r1-ndoe
r

dr
Substituting the right hand side from Eq. (d) into Eq. (3) gives:

(d)

.'.09 — 0, =rv

do,

—r(1-v) doy _ r do,
dr dr dr

rv

d
S.—(o. +0,)=0
d]"( 7 9)

integration leads to: o, +0,=2A (constant of integration) (e)
do
but Eq (3) states: o,y -0, =r—-=
dr
e do
so substituting in to (e) for o, 20,=2A-r y L
n
P49 105 =24
and rearranging: dr
D . 1d . ,
which is equivalent to: ——(r'o,)=2A
rdr
2
r’o, = 24r -B
Hence: 2

where B is another constant of integration

and using Eq. (e) leads to |09 =4 +—2
r

Note that, since &, =constand o, + oy =const ,then Eq. (9) shows that o, = const
,i.e. itis independent of . The value of o, can therefore be obtained from a consideration

of axial equilibrium.
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o, =A-——
r2
B
and Oy =A+—2
r

The constants, A and B, are the so-called Lame’s constants, which are the constants of
integration, can be obtained from the boundary conditions, i.e.

atr=R;, o, =—p;

atr=Ro, 0, =—p,

B
Loep=A-—
Ri
and-pOZA-ﬁ2
R;

Hence, A and B can be determined

For closed-ended cylinders:

2 2 2 2
7n(Ry — Ri )o, + R, p, =R p;

R’p —R>
le O.Z: lp; ozp()
(R, —R)

For a solid cylinder, i.e. Ri=0

B
O'r(r:Rl.:())=A—p=00,unless B=0
Therefore, B must be zero, since the stresses cannot be infinite, and so, for a solid
cylinder, the radial and hoop stresses are equal to each other and they are constant,
ie.o,.=09=4
Also, since a solid cylinder can only have external pressure, the constant A must equal

the external pressure.

Displacements are most conveniently obtained by using Egs. (7) and (9) together with
Egs. (4) and (6), i.e.
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(0-19 - V(O-r +0, ))

r
Al 1

= 7 =—(o0, —v(o, +0y))=constant

where [ is the cylinder length, Al is the increase in cylinder length and u is the radial

displacement at radius r.
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10.4 Analysis of rotating discs

Rotating components such as flywheels and turbine discs can be regarded as thick
cylinders with body forces, as well as possible pressure loads and as such represent

an extension of the thick cylinder theory discussed in the previous section.

10.4.1 Equilibrium

Figure 10.5: body diagram of an element of material within a disc

505 + 2095;»5{ 59) - (ar +dor 5r)(r + )50 = { p(r + %)5«9&&}(7/ + %)a)z

7 dr

do do 5\
o, +09or —ro, —0,.0r —F drr or — drr (5r)2 = p(r + ?j Sra?

2
SLO,—0,—r do, _do, or=prro’ +p o @ + prove’
dr  dr 2

Neglecting small terms, i.e. those containing or and (or)?
do,

+ prlw?

O'Q—O',.Ir

also

o,=0
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since it is a disc with no applied axial forces and is not constrained axially along its faces.

10.4.2 Compatibility and material behaviour

u 1

g(;:;:E(%—V@) 2)
du 1

gr:E:E(O-r_Vo-H) (3)

Substituting for u from Eq. (2) into to Eq. (3) gives:

i(i(gg —VO'r)j:%(O-r ~vog)

dr\ E
. do, do,
le, 0y —VO, +r J —V; =0, VO,
r
o, —o J1+v)+r do, —vdo-’ =0 (a)
dr dr

Substituting for oy — o,. from Eq. (1) into Eq. (a) gives:

do,
dr

0

(r@+pr2a)2j(l+v)+r do, —rv
dr dr

do, +rv do, +(1+v)prie’ +r@—rv do, _ 0
dr dr dr dr

or
.d 2
ie,—(c,+0.)=—(1+v)pao’r
dr
2

og +o, =—(1+ v)pa)2 %4—2/1 (b)

where B is a constant of integration. Therefore,

_B_pa’G+v) >

o,=4
r r2 8

and from Eq. (b):

2 2
00:A+£2+pa) (83+V)r2_pa) (21+V)r2
r
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2
o =A+£_pa) (1+3v)r2
[Z r2 3
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10.5 Example 1: Thick cylinder with pistons

A cylinder with 50m bore and 100mm OD is subjected to an internal pressure of 400bar.
The end loads are supported by pistons, which seal without restraint. Determine the

distributions of stress across the cylinder wall.

P =400 bar =400 X 100 kPa
=40 X 1000 kPa
= 40 N/mm?

EEANARARE 1 _ptone

P =400 bar

Since there is no axial load on the cylinder, then => [1; = 0.

For a thick cylinder:

Using the boundary conditions:

At r=25mm, o, = -40 N/mm?, therefore:

B
A 3
40=4 635 (3)

At r=50mm, o: =0

S p— 4
0=4-7500 @

Rearrange to give:

Department of Mechanical, Materials & Manufacturing Engineering

The University of Nottingham



MMME2053 — Mechanics of Solids — Thick-Walled Cylinders

B

= 5200 (5)

Substituting equation (5) in to equation (3) eliminates A and gives:

40 =B ! !
(625 2500)

or:
40 =B (4 _ 1)
7 \2500
therefore:
4 x 2500
= (6)

Substituting for B into equation (4) gives:

40 = A 40 x 2500
T YT 3 %625
therefore:
40
A= (7)
_40=A_40><2500
3x625

Las

3
Hence,

40 40x2500 40 2500
cp=—+t——7—= 1+

3 3r2 3 r2

40 40x2500 _40(, 2500
and Cr=3 T a2 1-—

3r2 3 r

Atr=25mm, oy = % X 5N/mrn2 = 66.7N/rnm2

and o, = % X (—3)N/mm2 = —40N/mm°
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At r=50mm, oy = % X 2N/mm2 = 26.7N/rnm2

and g, =0

Stress
MPa
(MPa) 5

40 A

20 -

-20 A

-40

-60 -
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10.6 Example 2: Shrink/interference fit

A pair of mild steel cylinders (E = 200 GPa) of equal length have the following dimensions:
1. 40mm bore and 80.06mm outside diameter

2. 80mm bore and 120mm outside diameter

i.e. there is a diametral interference of 0.06mm. The larger cylinder is heated, placed
around and allowed to shrink onto the smaller cylinder. Calculate the stresses after

assembly.

60mm

Conditions

(i) after assembly, the radial interference pressure, p, will be the same on both cylinders,
i.e. Cylinder 1 will have an external pressure, p, and Cylinder 2 will have an internal
pressure, p, as indicated in the above figure.

(i) The decrease in the outside radius of Cylinder 1, i1, plus the increase in the inside
radius of Cylinder 2, iz, will be equal to the radial interference, i.e. i = i1+ i

(iif) axial stresses are assumed to be zero (or negligible)

For cylinder (1):

B
Oy :Al Y
r
B
and og =4 +—;
r

atr=20mm, o =0,
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- B, =4004,

at r = 40mm (no significant difference with 40.03mm), o = -p

20° 400
P A~ A = A ———
P 0 B T 1600
ied =——p
andBl——@
3
_4p 400
Thus, (O-r)l——?(l—r—zj
4 400
and oy ), =——| 1+ —
(@), 3 ( rzj
u 1 1
EHZ;ZE(GG_V(O-V+O—z)):E(O-9_VO-r)

At the outside of cylinder (1), r = 40mm,

—h_ 1 _
40 200,000(0“’ vo,)

=i 1 (4p) 400 ( 400]

le — = —— |+ ——V|]l-—
40 200,000\ 3 1600 1600

;o 8p (5 _3v

" 3000004 4

. 2p
i =—E (5-3
h 30000( V)

For cylinder (2):

B,
2
r

At r=60mm, o: =0

- B, =36004,

and O-ngz

At r=40mm, or = -p
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60> 3600
oep=A —— A =4, ———
P 0r 2 =% 600

_ 4
1eA2=§p

and B, = 3600x%p

Thus, (o, ), ﬂgz(l-3fgoJ

s ) 2{1 259

z:l(o'e -v(o, +GZ)):%(O_H —VO',,)

Ep = £

At the inside of cylinder (2), r = 40mm,
+i, 1 (ig) 1+3600_V(1_3600j
40 200,000\ 5 1600 1600

el __8p (£+5—Vj

2750000\ 4 4
2p

i =—E _(1345y

: 50000( )

Butii +i2=i=0.03mm

2P (5-3y)+ —2P_ (134 5v) = 0.03
30000 50000

10p_2vp+26p+2vp_
30000 10000 50000 10000
50p+78p:0.03

150,000

iep = %N/mm2 =352 N/mm’

For cylinder (1),

400
(0,),=- 46.9(1 - r—zj
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(o), =- 46.9(1 + 4—020)

r

and for cylinder (2),

(c,), = 28.2(1 3 69())

r
(0,), = 28.2(1 e Sgoj
stress 100
(MPa) 0 | %7 &
60
40 1
20
r (mm)
0 \
00 | 2 40 60 80
' % & Ver &
-40 r
60 |
50 o> &
-100

Department of Mechanical, Materials & Manufacturing Engineering

The University of Nottingham



MMME2053 — Mechanics of Solids — Thick-Walled Cylinders | 92

10.7 Example 3: Turbine disc

A turbine rotor disc with an angular velocity of 4000rpm has an external diameter of 1.2m
and has a 0.1m diameter hole bored along its axis. Determine the stress distributions in
the disc.

Take: p=7850kg /m’and v=0.3

w =4000 rpm

R4=50mm
Shaft
B  pw?(B+v)r? (8)
op=A——
T 8
B pw?(1+ 3v)r? 9)
Og = Y 3
at 50mm, o,.= 0, therefore:
-9 2m 2 -3
B 7850 x 107 x (4000 X (m) X (3 +0.3) x 502 x 10
0=4-5:" 8

(note that the 10 is required for consistency of units when working in mm as the body

force is required in N)

gives:
(10)

B
0: A—m—14204

atr =600mm, o,= 0, therefore:
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B 7850 x 107 X (4000 X (2—’5) X (3 +0.3) X 600% x 1073
0=4-%002~ 8
gives:
_a__ 5 (11)
0= A— g0z — 20454
subtracting (10) from (11):
B ! ! = 204.54 — 1.42
(2500 3.6 X 106) ST '
therefore:
B=511350
and
A =205.95
Hence,
511350 12
0, = 205.95 — ——— — 5.68 x 10772 (12)
T
and
511350 1
09 = 205.95 + —5— —3.27 X 10~*r2 (13)

Evaluating (13) at the inner and outer diameters:

At r=50mm, gy =410 MPa
At r=600mm, g, = 89.6 MPa

The variation of both quantities can be seen in Table 1 and Figure 10.6
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Table 1: Hoop and radial stress values

r [mm] sigma_r [MPa] | sigma_theta [MPa]
ri 50 0.0 409.7
77.5 117.4 289.1
105 153.3 248.7
1325 166.9 229.3
160 171.4 217.6
187.5 171.4 209.0
215 168.6 201.9
242.5 163.9 195.4
270 157.5 189.1
297.5 149.9 182.8
325 141.1 176.2
352.5 131.2 169.4
380 120.4 162.3
407.5 108.5 154.7
435 95.7 146.8
462.5 82.0 1384
490 67.4 129.5
517.5 51.9 120.3
545 35.5 110.5
572.5 18.2 100.3
ro 600 0.0 89.6
450
emmwsicma_r [MPa]
400 - emmwsioma_theta [MPa]
350
300
EZSO [
=
2 200 1
wv
150
100 ¢
50 7
0
0 100 200 300 400 500 600
r [mm]

700

Figure 10.6: Hoop and radial stress variation

The maximum value of o, can be obtained by using
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do,

dr=0

to find the value of r and then evaluating (12) at this location. Leading to a value of
172MPa at a diameter of 173mm.
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