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7 Shear Stresses in Beams 
 

Learning Summary 

1. Appreciate that in addition to longitudinal bending stresses, beams also carry 

transverse shear stresses arising from the vertical shear loads acting within the 

beam (knowledge) 

2. Be able to derive a general formula, in both integral and discrete form, for 

evaluating the shear stress distribution through a cross-section (comprehension); 

3. Determine the shear stress distribution through the thickness in a rectangular, 

circular and I-section beam (application); 

4. Understand that in an I-section, in addition to the transverse vertical shear stresses 

in the flange and web, more dominant horizontal shear stresses also occur in the 

flange (comprehension); 

5. Recognise that the resultant of the shear stresses always act through one point, 

known as the ‘shear centre’ (comprehension); 

6. Calculate the position of the shear centre (application); 

7. Understand that if the applied loads do not act through the shear centre, then there 

is a resultant torsional load, which can result in twisting of the section if the torsional 

rigidity of the section is low e.g. thin walled sections (comprehension). 

 

7.1 Introduction 

Whereas bending stresses in beams arising from transverse loading are important, 

transverse (i.e. through-thickness) shear stresses due to these same loads also exist. For 

long slender beams, the shear stresses can generally be neglected, and it is only 

necessary to do a bending calculation for the beam. However, as the beam span to depth 

ratio reduces, i.e. if the beam is shorter and thicker, shear stresses become more 

important and should be calculated in any design evaluation. This can be particularly 

important for laminated beams, e.g. plywood or composite beams, where the transverse 

shear can cause failure between individual layers (plies) making up the beam. In this 

section we will derive a general formula for calculating the shear stress distribution 

through the thickness of a beam. We will then introduce the concept of shear centre, which 
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is the point through which the resultant of the shear stresses always acts. The shear 

centre becomes important for beam sections with low torsional rigidity, i.e. can twist easily, 

such as thin-walled sections. For such beams, if the resultant of the applied transverse 

loads does not act through the shear centre, they can cause twisting of the beam i.e. there 

is a bending-twisting interaction in the system. The designer should avoid this situation if 

possible or, at least, evaluate the degree of twisting which might take place.  

 

7.2 Transverse shear stress distribution 

The through-thickness shear force in a beam is the integral of the shear stresses over the 

cross-section. In this section we will determine an expression for the shear stress 

distribution (transverse i.e. through-thickness) at a section as a function of the shear force 

at that position. Consider an element of beam length, δx, as shown in Figure 7.1. The 

bending moment at x, section AC, is M and at x + δx, section BD, is M + δM. The direct 

bending stresses on AC are, 

 

 

 

Where y = distance from the neutral surface/axis 

I = 2nd moment of area of the section 
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Figure 7.1 

 

and on BD, the bending stresses are, 

 

 

 

Thus, when the bending moment varies along the length of the beam on an element such 

as ABEF, also shown in Figure 7.1, there is a net axial force due to change in the bending 

stresses. The force on the face FB is the integral of the bending stresses over the area 

FB, 
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The net force to the right acting on the element ABEF is the difference in these, i.e., 

 

Net Force (bending)  [1] 

 

 
Figure 7.2 

 

In order to maintain equilibrium of ABEF, shear stresses must act on the plane EF, of 

average value τ, as shown in Figure 7.2. These shear stresses are complementary to the 

transverse shear stresses. For positive transverse shear stresses, as shown, the 

complementary shear stresses act in the positive x direction. The net force to the right 

due to these complementary shear stresses is, 

 

Net Force (shear) = τ.z.δx 

 

where z is the width of the section at that depth 

 

Now, equilibrium of ABEF requires the net force due to bending to balance the net force 

due to the complementary shear. Thus, 
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But, in the limit,   

where S = shear force at the section 

 

 

  [2] 

 

This is the general expression for transverse shear stress at any position y through the 

thickness. The integral can also be written in discrete form as follows, 

 

   [3] 

 

where A is the area of the part of the cross-section outside the position at which τ is 

determined, and  is the distance of the centroid of this area from the neutral axis, as 

shown in Figure 7.3. 

 
Figure 7.3 
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7.3 Determination of shear stress distribution for different cross-sectional shapes 

 

7.3.1 Rectangular section 

 
Figure 7.4 

Referring to Figure 7.4 and using the discrete form for shear stress distribution, i.e. 

equation 3 above, we have, 

 

  and    

 

 

 

  [4] 

 

Note the parabolic distribution of shear stress (i.e. τ varies with y2), illustrated in Figure 

7.5. Also, at the top and bottom of the section, where y = ±d/2, equation 4 gives τ = 0. As 

expected, there is no complementary shear stress on the top and bottom free surfaces, 

therefore the transverse shear stress is also zero at these positions. 
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At the neutral axis, i.e. where y = 0, equation 4 gives, 

 

 

 
Figure 7.5 

 

This is the position of maximum shear stress whose magnitude is 1.5X the average shear 

stress S/bd. 

 

Note also that, in this analysis, the shear stress does not vary across the width of the 

section. 
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7.3.2 Circular section 

 
Figure 7.6 

 

Figure 7.6 shows a solid circular cross-section of a beam. To calculate the transverse 

shear stress distribution in this section, we use the integral form of the shear equation i.e. 

equation 2. However, because of the circular shape, it is convenient to change the 

variables y and z in this equation to polar variables, R and θ. Referring to Figure 7.6 we 

have, 

 

y1 = R sinθ1 

dy1 = R cosθ1dθ1 

z1 = 2R cosθ1 

z  = 2R cosθ 

 

and the 2nd moment of area, I = πD4/64 = πR4/4     

 

The shear equation now becomes, 
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But  

 

 [5] 

 

 

Again, a parabolic distribution and the maximum value of τ, at the neutral axis, when y=0 

is, 

 

 
Figure 7.7 

q
p

t

q
qp

qqq
qp

qqqq
qp

qp
t

p

q

p

q

p

q

p

q

2
2

2/

1
3

2

2/

111
2

5

3

2/

111114

2/

1114

cos
3
4

3
cos

cos
4

sin.cos
cos

4

cos.cos2.sin
cos2.
4.

cos2.
4.

R
S

R
S

d
R
SR

dRRR
RR
S

dyzy
RR
SydA

zI
S

=\

ú
û

ù
ê
ë

é-
=

=

=

==

ò

ò

òò

2
22 1sin1cos ÷

ø
ö

ç
è
æ-=-=
R
yqq

ú
ú
û

ù

ê
ê
ë

é
÷
ø
ö

ç
è
æ-=\

2

2 13
4

R
y

R
S

p
t

averageR
Syat t

p
t

3
4

3
4)0( 2max ===\



MMME2053 – Mechanics of Solids – Finite Element Method 10 

 

 

In this case, τ must vary across the width of the section. As can be seen in Figure 7.7, at 

the free surface the shear stress must be zero. Therefore, the complementary shear on 

the cross-section, normal to the boundary, is also zero. Thus, shear must be tangential to 

the boundary as drawn. 

 

7.3.3 I-section 

 
Figure 7.8 

 

To determine the transverse shear stress distribution in an I-section, we need to consider 

the web and flange areas separately. 

 

(i) Transverse shear in the web 

Figure 7.8(a) shows an I-section and the position y where we wish to determine the shear 

stress. Using the discrete form of the shear stress equation we have, 
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and   

 

The maximum τ at y=0:  

 

At the bottom and top of the web, where y=±d/2:    [6]  

 

(ii) Transverse shear in the flange 

Figure 7.8(b) shows the position y where we wish to determine the shear stress in the 

flange. Again, using the discrete form of the shear stress equation we have, 

 

 

 

At y = D/2   τ = 0, as expected i.e. zero shear complementary to the free surface 

 

At y = d/2 . Comparing this expression with equation 6, there is a step 

change in τ from the web to the flange of magnitude B / b i.e. the ratio of the flange width 

to the web width.  
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Figure 7.9 shows the transverse shear stress distribution down the centre line of the 

section and illustrates the step change discussed above. The shear in the flanges is small 

compared to the web and the shear stress in the web is approximately uniform with vertical 

position. Because of the small shear in the flanges, the average shear stress in the web 

is ≈ S / bd i.e. the shear force divided by the area of the web. 

 
Figure 7.9 

 

The above distribution only applies down the centre line of the web. The shear stresses 

in the flanges are small and non-uniform across the width. This must be the case as they 

must be zero at the top and bottom surfaces (i.e. free surfaces) of the flanges. There are, 

however, more significant shear stresses in the flanges which act parallel to the flanges 

i.e. horizontally. These can be determined by a similar analysis as follows: 

 

(iii) Horizontal shear in the flange 

Figure 7.10 shows a small length, δx, of I-beam over which the bending moment changes 

from M to M+δM. To determine the hidden horizontal shear stress, τ, at distance a from 

the edge of the flange, equilibrium of an element of the flange is considered. Equilibrium 

of stresses acting on the element gives, 
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Figure 7.10 

 

 

 

 

 

In the limit as δx –> 0,  

 

 

 

This is the same shear equation as before except the interpretation of the quantities A,  

and z is different as shown in Figure 7.10. At a distance a from the edge of the flange, the 

horizontal shear stress is given by, 
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τ therefore varies linearly with a from zero at the flange edge to a maximum value at the 

flange centre (a=B/2), 

 

 

 

τ is also parallel to the flange i.e. horizontal. 

 
Figure 7.11 

 

We can now draw the dominant shear stresses in both the flange and the web. Figure 

7.11 shows the distribution of these horizontal and vertical (transverse) shear stresses. 

The critical stress position is likely to be at the join of the web and flange where both the 

shear and bending stresses are high. 
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7.4 Shear Centre 

 
Figure 7.12 

 

Consider the shear stress distribution in a symmetric, thin walled channel section bending 

in the plane of the web as shown in Figure 7.12. 

 

For the flange at distance a from the edge, the horizontal shear stresses are, 

 

 

 

[analysed as previously for the flange in an I-section] 

 

For the web at distance y from the neutral axis, the transverse shear stresses are, 
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We can now draw the shear stress distribution in both the flanges and the web, as shown 

in Figure 7.13(a). For this shear stress distribution, note that the shear stress in the upper 

flange is in the opposite sense to that in the lower flange i.e. there is no horizontal 

resultant. Also, as there are no shear stresses on the free surfaces, the shear stresses 

act along the walls i.e. horizontal in the flanges and vertical in the web. 

 
Figure 7.13 

 

We can now look at the resultant forces arising from this shear stress distribution as 

shown in Figure 7.13(b). 

 

The total shear force in the lower flange, S1, is the integral of the shear stresses in this 

flange as follows, 
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An equal and opposite shear force acts in the upper flange. 

 

The shear force in the web is approximately S i.e. the total vertical shear load [assuming 

thin flanges carry negligible vertical shear load]. 

 

The resultant of all the shear stresses must be the vertical shear force S, and its line of 

action is distance e outside the web. Now taking moments about O in the web, 

 

 

 

 

 

It can be shown that the resultant of the shear stresses for a section, for bending in any 

plane, always act through one point, the SHEAR CENTRE. The shear centre always lies 

on an axis of symmetry. For sections with two axes of symmetry, the shear centre is at 

the centroid. 
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Figure 7.14 

 

If the applied vertical loads do not act in the plane of the resultant of the shear stresses 

i.e. through the shear centre, then there is a torsional load on the section as shown in 

Figure 7.14. For arbitrary solid sections, the location of the shear centre is a complicated 

problem. However, it is not usually important to determine the shear centre for solid 

sections because such sections usually have a considerable torsional rigidity and twist 

very little due to bending loads. However, for thin-walled open sections, which have low 

torsional rigidity, the position of the shear centre may be very important. 
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7.5 Worked Examples 

7.5.1 Shear Stresses in a Beam 

 
Figure 7.15 

 

The section shown in Figure 7.15 is subjected to a vertical shear force, S = 50 kN, acting 

down the vertical centre line i.e. the y-axis. The second moment of area of the section, 

about the x-axis, which passes through the centroid of area, G, is  Ixx = 2.31x106 mm4. G 

is positioned 14 mm below the flange. 

 

(a) Determine the magnitude of the transverse (i.e. vertical) shear stress at positions 

A, B, G and C on the vertical centre line. 

 

(b) Sketch the variation of the transverse shear stress down the vertical centre line 

 

 

In the top flange: 
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Consider a position in the top flange, vertical distance y from the centroid, G, as shown in 

Figure 7.16(a). Using the discrete form of the shear formula, 

 
Figure 7.16 

 

 

 

At position A, y = 34  

 

At position B, y = 14  

 

In the lower section: 

 

Consider a position in the lower section, again vertical distance y from the centroid, G, as 

shown in Figure 7.16(b). 

 

At position B, there is a step change in the shear stress given by the ratio of the section 

widths at this point. Thus, 
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At position G, i.e. the neutral axis, we can use the discrete formula for the shear stress. 

In this case, to simplify calculation, the relevant area can be regarded as the area below 

the neutral axis. Thus, 

 

At position G   

 

At position C   i.e. a free surface 

 

A sketch of the variation of the shear stress down the vertical centre line is now given in 

Figure 7.17. 

 
Figure 7.17 
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7.5.2 Shear Centre of thin-walled semi-circular cross-section 

 
Figure 7.18 

 

For the thin-walled semi-circular cross-section shown in Figure 7.18, determine the 

position of the shear centre (assume bending about the axis of symmetry X-X) 

 

Shear stress distribution: 

 

To solve this problem it is necessary to change from a rectangular co-ordinate system (x-

y) to a polar co-ordinate system (r-θ). Referring to Figure 7.18 and using the integral form 

of the shear stress formula, we obtain a general expression for the shear stress 

distribution parallel to the wall of the section. Thus, 
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giving,    

 

Now,    

 

From [7] and [8], 

 

 

 

Shear centre: 

 

The twisting moment (torque) associated with the above shear stress distribution for the 

whole cross-section is found by taking moments about O, 
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To counteract this twisting moment, as shown in Figure 7.19, the shear force, S, must be 

applied at the shear centre, a distance e, given by, 

 

 

 

 

 

 
Figure 7.19 
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