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1 Combined Loading 
 

Learning Summary 

1. Know how to use Mohr’s circle to analyse a general state of plane stress 

(knowledge); 

2. Recognise that the effect of combined loads on a component can be analysed by 

considering each load as initially having an independent effect (comprehension); 

3. Employ the principle of superposition to determine the combined effect of these 

loads (application). 

 

1.1 Introduction 

Many engineering problems can be analysed as simple load situations e.g. uniaxial 

loading, beam bending, torsion etc. However, it is also very common in the real world for 

engineering components and structures to be subjected to several loads simultaneously. 

This is a combined loading situation and can be analysed by superposing the effects of 

the individual loads. 

 

1.2 Mohr’s Circle Recap 

Mohr’s circle for plane stress is a useful graphical technique for analysing plane stresses 

acting on an element in a material or structure. For combined loading situations, it is 

common to reduce the problem to such a plane stress problem and analyse using Mohr’s 

circle. The analysis will give the principal stresses, the maximum shear stresses and the 

angles of the principal planes for the element.  Figure 1.1 shows a shaft subjected to 

combined loading of a torque, T, and a compressive axial load, P. 
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Figure 1.1 

 

Let us assume that the loading gives rise to an axial stress of -12 MPa (i.e. compressive) 

and a shear stress of -6 MPa (i.e. causes element to rotate clockwise) acting on a surface 

element as shown in the figure.  The Mohr’s circle analysis is then as follows: 

 

The known stresses on the element are:   

 

σx = -12 MPa 

σy =    0 MPa 

τxy = -6 MPa 

τyx =   6 MPa 

 

Figure 1.2 shows the Mohr’s circle for this stress system. To draw the circle, firstly draw 

the point B, which represents stresses on the x-plane (co-ordinates: -12, -6). Next draw 

point E, which represents stresses on the y-plane (co-ordinates: 0, +6). Join the two points 

with the line BE, which intersects the x-axis at the centre of the circle, C.  
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Figure 1.2 

 

The circle can now be drawn and the following quantities measured: 

 

σ1 = 2.5 MPa 

σ2 = -14.5 MPa 

τmax = 8.5 MPa 

2θ = 45° 

 

On the element, the angle of the principal plane (P1) from the y-plane is θ = 22.5° 

anticlockwise as shown in Figure 1.2. 

 

Alternatively, the important parameters in the circle can be calculated analytically as 

follows: 

 

The centre of the circle is given by: 

C = (σx + σy)/2 = -6 

 

The radius of the circle is given by: 
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The Principal stresses are:  

σ1 = C + R = 2.5 MPa 

 

σ2 = C - R = -14.5 MPa 

 

τmax = R = 8.5 MPa 

 

The angle of the principal planes: 

 
 

2θ = 45° 

 

θ = 22.5° 

 

If the analytical approach is taken (which does give the more accurate results), then it is 

always advisable to sketch the Mohr’s circle in order to gain a clear understanding of the 

orientation of the principal planes and the maximum shear planes with respect to the x- 

or y-planes.  

 

1.3 Superposition of Combined Loads 

The Principal of Superposition states that:  

 

 
 

[see volume 1 of ‘Introduction to Mechanical Engineering’] 
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Thus, when a body or structure is subjected to a combination of different types of loading 

simultaneously, we can consider the effect of each load on local stresses on an element 

separately. Stresses on the element can then be summed to determine the effect of the 

combined loading. A number of combined loading examples can be used to illustrate: 

 

Combined bending and axial loads 

Figure 1.3 shows a beam carrying a uniformly distributed load (UDL) along its span, while 

simultaneously being subjected to an axial force, F. Figure 1.3 shows how the effect of 

the combined loading, on the stress distribution through the thickness of the beam at the 

centre of its span, is determined. The effect of the UDL and the axial force are obtained 

separately and then summed to give the combined stress distribution in the beam. The 

symmetrical bending stress distribution about the neutral axis is essentially skewed to 

more by the effect of the axial stress 

 

Combined bending and torsion 

Figure 1.4 shows a similar beam to the above example, except now the beam carries a 

torque instead of the axial load. This loading situation is typical of a shaft with self-weight 

(UDL) transmitting a torque. In this case, the beam cross-section can be assumed to be 

solid circular with diameter d. The stresses at the centre of the span, at the bottom surface 

of the beam, are given by the usual bending and torsion equations as follows: 
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Figure 1.3 
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Figure 1.4 

 

Arising from the UDL:  

Bending stress (σB)  where y = d/2 

Arising from the torque:  

Torsional shear stress (τ)  where r = d/2 

These two stresses can be superposed and illustrated acting on an element at the surface 

of the beam, as shown in Figure 1.4. 
 

Mohr’s circle can now be used for this element to obtain the principal stresses and 

maximum shear stress at this position. 

 

Combined pressure, axial and torsional loading 
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Figure 1.5 

 

A combination of three loads can be illustrated by considering a thin-walled cylinder, as 

shown in Figure 1.5 subjected to an internal pressure, P, an axial tensile force, F, and a 

twisting torque, T. Figure 1.5 shows the stresses, arising from each load separately, acting 

on a surface element in the plane of the cylinder wall. Superposition of these three 

stresses are also shown on the element. Mohr’s circle can again be used to obtain the 

principal stresses and maximum shear stress for the element. 

 

1.4 Methodology for Combined Loading 

The methodology for analysing components or structures under combined loading can 

now be summarised: 

 

(i) Identify a 2D element at the location of interest in the component 

P
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(ii) Determine the stresses acting on the element arising from each individual load 

 

(iii) Superpose the stresses from each individual load to obtain the combined stresses 

on the element 

 

(iv) Use Mohr’s circle to determine the principal stresses and the maximum shear 

stress on the element 

 

1.5 Worked Example 

Combined bending and torsion – offset loading on a cantilever 

Figure 1.6 shows a solid circular cross-section cantilever beam, length, L, and diameter, 

d, fixed at one end. Attached at the free end of the beam is a crank arm which allows a 

vertical load, P, to be applied at an offset distance, a, from the axis of the cantilever. 

 

Determine the maximum shear stress on the upper surface at the fixed support of the 

cantilever beam (position A). 

 

 
Figure 1.6 

P = 1 kN 

L = 200 mm 

a = 120 mm 

Fixed end 

Position A 

τ 

τ σB 

σB 
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The following load and dimensions apply: 

 

P = 1 kN 

L = 200 mm 

a = 120 mm 

d = 30 mm 

 

We consider the stresses acting on a small surface element at position A. The load gives 

rise to a bending moment and torsional moment at the cross-section at position A as 

follows: 

 

Bending moment 

M = PL 

 

Torsional moment 

T = Pa 

  

These moments give rise to separate bending and shear stresses acting on the element 

at position A which can be superposed to give the total effect of the combined loading as 

shown in Figure 1.6 The stresses are: 

 

Bending stress:      

 

Torsional shear stress  

  

Mohr’s circle can now be drawn for the element to determine the maximum shear stress, 

as shown in Figure 1.7. The co-ordinates of Point B on the circle (σB,τ) correspond to the 

stresses on the element in the longitudinal direction, i.e. along the cantilever. Point E 

corresponds to the stresses (0,-τ) in the transverse direction to this. The line joining these 

two points defines the diameter of the circle and, where it crosses the σ-axis, the centre, 
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C. The circle can now be drawn and its radius measured to give the maximum shear 

stress as follows: 

 

τ max = Radius = 44 MPa 

 

 
Figure 1.7 

Alternatively, by calculation, given the element stresses: 

σx  = 75.45 MPa 

σy  = 0 MPa 

τxy = 22.64 MPa 

 

The maximum shear stress: 

τmax = Radius =  

 

=  

= 44 MPa  as before 
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Mechanics of Solids – Deflection of Beams Notes 

 

Learning Summary 

1. Know how to derive the differential equation of the elastic line (i.e. deflection curve) of a beam (synthesis) 

2. Be able to solve this equation by successive integration to yield the slope, !"
!#

, and the deflection, 𝑦, of a beam at 

any position, 𝑥, along its span (application) 

3. Employ Macaulay’s method, also called the method of singularities, to solve for beam slopes and deflections where 
there are discontinuities in the bending moment distribution arising from discontinuous loading (application) 

4. Recognise and use different singularity functions in the bending moment expression for different loading 
conditions including point loads, uniformly distributed loads and point bending moments (comprehension) 

5. Employ Macaulay’s method for statically indeterminate beams (application) 

 

1. Introduction 

Whereas the design of engineering structures and components is very often dictated by the strength of the materials 
used and consequently the stresses within the structure, often the limiting factor is the allowable deflection. This is 
particularly important for engineering artefacts made from materials of lower stiffness, e.g. aluminium, plastics, 
composites, etc., but may also be critical for high stiffness structures comprising slender members. It is therefore 
important, as part of the design process, to be able to calculate maximum deflections in a structure in addition to the 
position at which they occur. 

Here, following the derivation of the fundamental deflection equation for a beam, a flexible procedure is introduced, 
called Macaulay’s Method, which allows for slopes and deflections to be calculated at any position along a beam span. 
In particular, the method allows us to deal with different types of loading, such as point loads, uniformly distributed 
loads and point bending moments, including discontinuities in these loads. Although not the only method for 
calculating deflections, as we will see in the Strain Energy Methods section of the module, it is a particularly powerful 
and flexible method. 

 

2. Equation of the Elastic Line 

Taking a generic curve, 𝑦	 = 	𝑓(𝑥), two arbitrary points, A and B, can be chosen, as shown in Figure 1.  
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Figure 1 

 

The gradients at these two arbitrary positions can be defined as: 

*
d𝑦
d𝑥,$

= tan	𝜃 

and 

*
d𝑦
d𝑥,%

= tan	(𝜃 + 𝛿𝜃) 

 

Letting the normals to the curve at points A and B meet at point 𝐶, if points A and B are close, the lengths A𝐶 and B𝐶 
are similar. I.e.: 

A𝐶	 ≈ B𝐶	(= 𝑅) 

 

Length AB can therefore be thought of as a small arc of a circle of radius, 𝑅. 

 

Note that angle A𝐶B = 𝛿𝜃, since, as the tangent turns through angle 𝛿𝜃, so does the normal. Therefore arc AB =
𝛿𝑠 = 𝑅𝛿𝜃, which can be re-arranged to give: 

1
𝑅
=
𝛿𝜃
𝛿𝑠

 

 

As 𝛿𝑠 → 0 (i.e. as points A and B become closer): 

𝛿𝜃
𝛿𝑠

→
d𝜃
d𝑠
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 ∴
1
𝑅
=
d𝜃
d𝑠

 (1) 

 

It can be seen from Figure 2 that since 𝛿𝑠 is small, the arc AB	(= 𝛿𝑠) ≈ the chord AB. 

 

 

Figure 2 

 

Therefore, when	𝛿𝑠 → 0: 

 
d𝑦
d𝑥

= tan	𝜃 (2) 

and 

 
d𝑥
d𝑠

= cos	𝜃 (3) 

 

Differentiating equation (2) with respect to 𝑠 gives: 

d
d𝑠 *

d𝑦
d𝑥,

=
d
d𝑠
(tan	𝜃) 

 

Multiplying the left-hand side of this equation by !#
!#

, and the right-hand side by !&
!&

 gives: 

d
d𝑥 *

d𝑦
d𝑥,

d𝑥
d𝑠

=
d
d𝜃
(tan	𝜃)

d𝜃
d𝑠

 

 

Rearranging this and substituting in equation (3): 

d'𝑦
d𝑥'

(cos	𝜃) = sec'𝜃
d𝜃
d𝑠

 

!

"

arc
	AB
= %
&cho

rd	A
B

d$

d%
&

$

%
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 ∴
d'𝑦
d𝑥'

= 𝑠𝑒𝑐(𝜃
d𝜃
d𝑠

= A1 + *
d𝑦
d𝑥,

'

B
( '⁄

d𝜃
d𝑠

 (4) 

where 

sec(𝜃 = (sec'𝜃)( '⁄ = (1 + tan'𝜃)( '⁄ = A1 + *
d𝑦
d𝑥,

'

B
( '⁄

 

 

Rearranging equation (4): 

d𝜃
d𝑠 =

d!𝑦
d𝑥!

'1 + (d𝑦d𝑥)
2
*
3 2⁄  

 

Substituting this into equation (1) gives: 

 
1
𝑅
=

d'𝑦
d𝑥'

A1 + *d𝑦d𝑥,
'
B
( '⁄  (5) 

 

Application to a beam under bending 

The section of a span of a beam, shown in Figure 3, is under pure bending, i.e. there is a constant bending moment 
along this section and no shear force.  

 

 

Figure 3 

 

Under these pure bending conditions, the neutral axis (the axis on which there is zero stress) of the beam, also named 
the elastic line or deflection curve, is a circular arc with radius of curvature, 𝑅, as shown in Figure 4. 

 

In a section of span of a beam under pure bending there is a constant 
bending moment along this section and no shear force.
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Figure 4 

 

The transverse deflection of the elastic line is given by the co-ordinate, 𝑦, of any position along its length, 𝑥 [n. b. do 
not confuse this ‘𝑦’ definition for deflection with the ‘𝑦’ denoting distance from the neutral axis in the beam bending 
equation, as shown in equation (6)]. The line denoting the neutral axis in Figure 4 is known as the ‘elastic line’ or the 
‘deflection curve’ of the beam. 

 

The elastic beam bending equation, which can be used to describe the bending moment, 𝑀, as a function of the radius 
of curvature, 𝑅, is: 

 
𝑀
𝐼
=
σ
y
=
𝐸
𝑅

 (6) 

∴
1
𝑅
=
𝑀
𝐸𝐼

 

where 𝐸 is Young’s modulus and 𝐼 is 2nd moment of area.  

 

Substituting this into equation (5), which also represents the shape of an arc, gives: 

 
𝑀
𝐸𝐼
=

d'𝑦
d𝑥'

A1 + *d𝑦d𝑥,
'
B
( '⁄  (7) 

 

For small deflections, !"
!#

 is small. Therefore: 

A1 + *
d𝑦
d𝑥,

'

B
( '⁄

≈ 1 

 

Equation (7) can therefore be simplified and rearranged to give: 

 𝑬𝑰
𝐝𝟐𝒚
𝐝𝒙𝟐

= 𝑴 (8) 

 

!
"

#

Elastic Line

!
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This is the is the 2nd order differential equation of the elastic line, relating the deflection, 𝑦, to the applied bending 
moment, 𝑀, the Young’s modulus, 𝐸, 2nd moment of area, 𝐼, and position along beam span, 𝑥. The product of 𝐸 and 
𝐼, i.e. 𝐸𝐼, is termed the ‘Flexural Rigidity’ of the beam.  

Successive integration of this equation, with respect to 𝑥, will yield the slope, !"
!#

, and the deflection, 𝑦, as function of 

position, 𝑥, along the beam. 

This equation has been derived for the case of pure bending, i.e. constant bending moment along the section, and 
does not take into account deflections due to shear. For long slender beams, shear deflections can be neglected. 

A complication arises where discontinuities in 𝑀 exist, such as where there are point loads and/or point bending 
moments or where there is an abrupt change in distributed loading. Various methods have been developed to solve 
such problems with discontinuities. Here we introduce and develop the procedure called Macaulay’s Method, a 
versatile solution procedure which can handle most discontinuities we are likely to encounter. 

 

3. Macaulay’s Method (also termed the Method of Singularity Functions) 

Named after the mathematician W. H. Macaulay, Macaulay’s Method uses a mathematical technique to deal with 
discontinuous loading. The bending moment expression 𝑀(𝑥), i.e. 𝑀 as a function of 𝑥, is replaced with the step 
function 𝑀〈𝑥 − 𝑎〉, in which 𝑎 defines the position at which a discontinuity arises. 

 

Figure 5 shows a simply supported beam carrying a point load, 𝑃, at the centre of its length. This load gives rise to a 
discontinuity in the bending moment expression.  

 

 

Figure 5 

 

Figure 6 shows a free body diagram of this beam. 

 

 

Figure 6 

 

Considering each span between the loading discontinuity separately in order to determine expressions for bending 
moment, 𝑀.: 

!! "⁄

#

!! "⁄

#!! !"
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Span 1 

Figure 7 shows the free body diagram of the beam sectioned within span 1 (i.e. before the loading discontinuity caused 
by 𝑃), taking the origin as the left-hand end. The unknown bending moment, 𝑀, and shear force, 𝑆, at this section, are 
shown in the diagram. 

 

 

Figure 7 

 

Taking moments about the section position in order to determine an expression for the bending moment, 𝑀, in span 
1: 

𝑀 = 𝑅-𝑥 

 

Substituting this into equation (8): 

 𝐸𝐼
d'𝑦
d𝑥'

= 𝑅-𝑥 (9) 

 

Equation (9) applies to span 1 of the beam only. 

 

Span 2 

Figure 8 shows the free body diagram of the beam, now sectioned within span 2 (i.e. after the loading discontinuity 
caused by 𝑃). As before, the unknown bending moment, 𝑀, and shear force, 𝑆, at this section, are shown in the 
diagram.  

 

 

Figure 8 

 

Taking moments about the section position in order to determine an expression for the bending moment, 𝑀, in span 
2: 

𝑀 + 𝑃 *𝑥 −
𝐿
2,

= 𝑅-𝑥 

!
"

!! 	#

!! "⁄ #
$

!! 	#



  
8 

∴ 𝑀 = 𝑅-𝑥 − 𝑃 *𝑥 −
𝐿
2,

 

Substituting this into equation (8): 

 𝐸𝐼
d'𝑦
d𝑥'

= 𝑅-𝑥 − 𝑃 *𝑥 −
𝐿
2,

 (10) 

 

Equation (10) applies to span 2 of the beam only.  

 

It is interesting to note that the forms of equations (9) and (10) are similar, in that there is simply an extra term added 
to take account of the extra span of the beam (as we move past the loading discontinuity). In fact, due to this similarity, 
equation (10), i.e. the expression derived for the final span of the beam, can be applied to the full length of the beam 
by rewriting it in a slightly different form as follows: 

 𝐸𝐼
d'𝑦
d𝑥'

= 𝑅-𝑥 − 𝑃 〈𝑥 −
𝐿
2
〉 (11) 

 

Note the change of bracket shape. These 〈 〉 brackets are termed ‘Macaulay Brackets’ and due to these, equation 
(11) is now applicable to any position, 𝑥, in the beam shown in Figure 5, if we adopt ‘Macaulay’s convention’. 
Macaulay’s convention states that whenever a Macaulay bracketed term becomes negative, the entire term it is part 
of is set to zero. 

Adopting this convention, the general 2nd order differential expression for the beam, shown by equation (11) for the 

beam shown in Figure 5, can be integrated with respect to 𝑥 to give the slope, !"
!#

, and integrated again to give the 

deflection, 𝑦, at any position 𝑥, along the length of the beam. 

 

If, for example, the slope and deflection at the position of the point load shown in Figure 5 was required, the solution 
is as follows: 

 

Application of equilibrium for the determination of the reaction forces at the support positions  

Vertical Equilibrium: 

 𝑃 = 𝑅- + 𝑅. (12) 

 

Taking moments about the position of 𝑅-: 

𝑅.𝐿 =
𝑃𝐿
2

 

∴ 𝑅. =
𝑃
2
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Substituting this into equation (12): 

 𝑅- =
𝑃
2

 (13) 

 

Determination of expressions for slope, 𝐝𝒚
𝐝𝒙

, and deflection, 𝒚, as functions of 𝒙 

Once the 2nd order differential expression for the beam has been determined, in this case as given by equation (11), 
integration with respect t to 𝑥 gives: 

 𝐸𝐼
d𝑦
d𝑥

=
𝑅-𝑥'

2
−
𝑃 〈𝑥 − 𝐿2〉

'

2
+ A (14) 

where !"
!#

 represents the slope at any position, 𝑥. 

 

Integrating with respect to 𝑥 again: 

 𝐸𝐼𝑦 =
𝑅-𝑥(

6
−
𝑃 〈𝑥 − 𝐿2〉

(

6
+ A𝑥 + B (15) 

where 𝑦 represents the deflection at any position, 𝑥. 

 

Use of boundary conditions for the determination of the constants of integration 

Boundary condition 1: at 𝑥 = 0, 𝑦 = 0 (i.e. at this support position there is no deflection) 

Applying this to equation (15): 

B = 0 

 

Note that the term related to 𝑃 has been set to zero, as the contents of the Macaulay brackets is negative (i.e. 

〈0 − 2
'
〉 < 0). 

 

Boundary condition 2: at 𝑥 = 𝐿, 𝑦 = 0 (i.e. at this support position there is no deflection) 

Applying this to equation (15): 

0 =
𝑅-𝐿(

6
−
𝑃 X𝐿2Y

(

6
+ A𝐿 

 ∴ A =
𝐿'

6 *
𝑃
8
− 𝑅-, (16) 
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Note that for the term related to 𝑃, the Macaulay brackets have been changed to regular brackets, as Macaulay’s 

convention has been applied and the contents of the Macaulay brackets is positive (i.e. 〈𝐿 − 2
'
〉 > 0)). 

 

Evaluation of slope and deflection at position of interest 

As it is at 𝑥 = 2
'
 that the slope and deflection is required, this value of 𝑥 can be substituted into equations (14) and 

(15), and Macaulay’s convention applied to give: 

𝐸𝐼
d𝑦
d𝑥

=
𝑅-𝐿'

8
+ A 

and 

𝐸𝐼𝑦 =
𝑅-𝐿(

48
+
A𝐿
2

 

 

Substituting the expressions for 𝑅- and A, from equations (13) and (16), respectively, into these, and rearranging for 
!"
!#

 and 𝑦, gives: 

d𝑦
d𝑥

= 0 

and 

 𝑦 = −
𝑃𝐿(

48𝐸𝐼
 (17) 

 

As the beam is loaded and supported symmetrically, it makes sense that the slope at the centre position is zero. 
Additionally, as the single applied load is downwards, it would be expected that the deflection at the centre position 
of the beam would also be downwards and therefore negative according to the sign convention defined in section 2 
of these notes, i.e. 𝑦 is positive in the upwards direction. 

 

4. Alternative Loading Types 

Uniformly distributed load 

Consider a uniformly distributed load (UDL), 𝑤 Nm-1, acting over part of a beam’s span, as shown in Figure 9. The UDL 
runs from distance 𝑎 from the origin (left-hand end) of the beam, all the way to the right-hand end of the beam. A 
discontinuity occurs at the position where the UDL commences. 

 

 

Figure 9 

! N/m

"! ""
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!
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Figure 10 shows the resulting free-body diagram after sectioning the beam after the discontinuity.  

 

 

Figure 10 

 

Taking moments about the section position: 

 𝑀 +
𝑤〈𝑥 − 𝑎〉'

2
= 𝑅-𝑥 (18) 

∴ 𝑀 = 𝑅-𝑥 −
𝑤〈𝑥 − 𝑎〉'

2
 

 

And substituting this into equation (8) gives: 

𝐸𝐼
𝑑'𝑦
𝑑𝑥'

= 𝑅-𝑥 −
𝑤〈𝑥 − 𝑎〉'

2
 

 

As in section 3 of these notes, this 2nd order differential expression of the elastic line can now be integrated with 

respect to 𝑥 in order to determine the slope, !"
!#

, and again in order to determine the deflection, 𝑦, as functions of 𝑥. 

Boundary conditions are then used to determine the constants of integration before evaluation of the slope and/or 
deflection at any position, 𝑥, along the beam.  

 

As can be seen from equation (18), when taking moment equilibrium, the contribution of the UDL is calculated by first 
turning the UDL, 𝑤 (unit Nm-1), into a force (unit N) by multiplying it by the distance over which it acts, 𝑥 − 𝑎 (unit m). 

This force is then turned into a moment by multiplying it by the distance to the centre position of the UDL, 〈#45〉
'

 (unit 

m). Note that Macaulay brackets are used in the length term in order to allow for Macaulay’s method to be employed 
for the inclusion or elimination of the term depending on the position, 𝑥, being evaluated. 

 

Discontinuous uniformly distributed load 

A discontinuous UDL is shown in Figure 11. 

 

!

"!

	$ !
"
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Figure 11 

 

In this case, the UDL, 𝑞, runs from distance 𝑎 from the origin (left-hand end) of the beam, up to distance 𝑏 from the 
origin. Discontinuities therefore occur both at the position where the UDL commences, and at the position where it 
ends. 

 

In order to progress towards a general bending moment expression for the beam, analogous to equation (18) for the 
continuous UDL, the applied discontinuous UDL, 𝑞, is extended to the end of the beam and an additional, negative, 
counterbalancing UDL superimposed over the newly extended part, as shown in Figure 12. The extended applied UDL, 
𝑞, and the added counterbalancing UDL, −𝑞, mathematically cancel each other out and therefore this gives a statically 
equivalent system to the original partially extended (discontinuous) UDL. 

 

 

Figure 12 

 

As before, the beam is then sectioned after the final discontinuity, and a free body diagram drawn, as shown in Figure 
13. 

 

 

Figure 13 

 

In the determination of a bending moment expression, each of the now continuous UDLs in Figure 13 are dealt with 
as in the determination of equation (18) from Figure 10. I.e.: 

! N/m
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𝑀 +
𝑞〈𝑥 − 𝑎〉'

2
= 𝑅-𝑥 +

𝑞〈𝑥 − 𝑏〉'

2
 

∴ 𝑀 = 𝑅-𝑥 +
𝑞〈𝑥 − 𝑏〉'

2
−
𝑞〈𝑥 − 𝑎〉'

2
 

 

Substituting this into equation (8) gives: 

𝐸𝐼
d'𝑦
d𝑥'

= 𝑅-𝑥 +
𝑞〈𝑥 − 𝑏〉'

2
−
𝑞〈𝑥 − 𝑎〉'

2
 

 

As before, this 2nd order differential expression of the elastic line can be integrated with respect to 𝑥 in order to 

determine the slope, 7"
7#

, and again in order to determine the deflection, 𝑦, as functions of 𝑥, and boundary conditions 

used to determine the constants of integration before evaluation of the slope and/or deflection at any position, 𝑥, 
along the beam. 

 

Point bending moment 

Consider a point bending moment, 𝑀8 Nm, acting at a distance 𝑎 from the left-hand side of a beam which is simply 
supported at both ends, as shown in Figure 14. This point bending moment gives rise to a discontinuity in the bending 
moment expression. 

 

 

Figure 14 

 

Figure 15 shows the resulting free-body diagram after sectioning the beam after the discontinuity. 

 

 

Figure 15 

 

Taking moments about the section position: 

!! !"

	#

$#
!

!!

	#

$"
	%

!
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 𝑀 +𝑀8〈𝑥 − 𝑎〉9 = 𝑅-𝑥 (19) 

∴ 𝑀 = 𝑅-𝑥 −𝑀8〈𝑥 − 𝑎〉9 

 

And substituting this into equation (8) gives: 

 𝐸𝐼
d'𝑦
d𝑥'

= 𝑅-𝑥 −𝑀8〈𝑥 − 𝑎〉9 (20) 

 

Again, equation (20) can be integrated with respect to 𝑥 in order to determine the slope, !"
!#

, and again in order to 

determine the deflection, 𝑦, as functions of 𝑥, and boundary conditions used to determine the constants of integration 
before evaluation of the slope and/or deflection at any position, 𝑥, along the beam. 

 

Note from equation (19), that the form of the discontinuity function for the point bending moment is 𝑀8〈𝑥 − 𝑎〉9. This 
is the same as for a point load, except that the bracketed length is raised to the power zero. This is simply a 
mathematical convenience for facilitating Macaulay’s method whilst maintaining the correct units of the moment, 𝑀8. 
I.e. if a position in the beam where 𝑥 < 𝑎 is considered for evaluation, then the contents of the Macaulay brackets is 
negative and the entire term set to zero. However, if a position in the beam where 𝑥 > 𝑎 is considered for evaluation, 
then the contents of the Macaulay brackets is positive, and the term is included. As the length term,	〈𝑥 − 𝑎〉9, is raised 
to the power of zero, it becomes 1, and so the term simplifies to 𝑀8. 

 

5. Summary of the Discontinuity Functions 

We have seen that Macaulay’s method can be used to find the slope and/or deflection at any position along a beam 
where point loads, uniformly distributed loads and/or point bending moments produce discontinuities in the bending 
moment expression. The method can also be used where there is a combination of these loads acting on a beam. 

When developing the bending moment expression for a beam with load discontinuities, the singularity functions 
shown in Table 1 are used for each different type of load. 

 

Table 1 

Load Type Singularity Function 

Point Load, 𝑃 𝑃〈𝑥 − 𝑎〉 

Continuous UDL, 𝑤 – single discontinuity 𝑤〈𝑥 − 𝑎〉'

2
 

Discontinuous UDL, 𝑞 – double discontinuity 𝑞〈𝑥 − 𝑏〉'

2
−
𝑞〈𝑥 − 𝑎〉'

2
 

Point Bending Moment, 𝑀8 𝑀8〈𝑥 − 𝑎〉9 
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Note that in these singularity functions, the exponent is 1 for a point load, 2 for a UDL and 0 for a point bending 
moment. 

 

6. Worked Example – Beam with Point Load, Discontinuous Uniformly Distributed Load & Point Bending Moment 

Problem 

Figure 16 shows a steel simply supported beam of length, 𝐿 = 1.5 m, carrying: 

• a point bending moment, 𝑀8 = 3 kNm, at a distance of 2
:
 from the left-hand end 

• a point load, 𝑃 = 2 kN, at a distance of 2
(
 from the left-hand end 

• a discontinuous uniformly distributed load, 𝑞 = 4 kN/m, between distances of 2
(
 and '2

(
 from the left-hand end 

The Young’s modulus, 𝐸,  of the material is 200 GPa and the beam is of circular cross-section of diameter, 𝐷 = 50 mm. 

 

 

Figure 16 

 

Use Macaulay’s method to determine the slope and deflection of the beam at its centre position. 

 

Solution 

As the beam is of circular cross-section, the 2nd moment of area, 𝐼, is calculated as: 

𝐼 =
π𝐷;

64
=
π × 0.05;

64
= 3.068 × 104<m; 

 

Figure 17 shows a free-body-diagram of the beam which can be used to calculate the reaction forces. 

 

!
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Figure 17 

 

Taking vertical equilibrium: 

 𝑅- + 𝑅. = 𝑃 +
𝑞𝐿
3

 (21) 

 

Taking moments about position A: 

𝑅.𝐿 = 𝑀8 +
𝑃𝐿
3
+
𝑞𝐿'

6
 

∴ 𝑅. =
𝑀8

𝐿
+
𝑃
3
+
𝑞𝐿
6
=
11
3
	kN 

 

Substituting this into equation (21) and rearranging for 𝑅-: 

𝑅- = 𝑃 +
𝑞𝐿
3
− 𝑅. =

1
3
	kN 

 

Next, as there is a discontinuous uniformly distributed load, this needs to be extended to the end of the beam and an 
additional, negative, counterbalancing UDL superimposed over the newly extended part. Figure 18 shows the result 
of taking the left-hand end of the beam as the origin and sectioning the beam after the final discontinuity. 

 

 

Figure 18 
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Taking moments about the section position (remembering to implement Macaulay’s convention): 

𝑀 + 𝑃 〈𝑥 −
𝐿
3
〉 +

𝑞 〈𝑥 − 𝐿3〉
'

2
= 𝑅-𝑥 +𝑀8 〈𝑥 −

𝐿
6
〉9 +

𝑞 〈𝑥 − 2𝐿3 〉
'

2
 

∴ 𝑀 = 𝑀8 〈𝑥 −
𝐿
6
〉9 + 𝑅-𝑥 − 𝑃 〈𝑥 −

𝐿
3
〉 +

𝑞 〈𝑥 − 2𝐿3 〉
'

2
−
𝑞 〈𝑥 − 𝐿3〉

'

2
 

 

Substituting this into equation (8) gives: 

𝐸𝐼
d'𝑦
d𝑥'

= 𝑀8 〈𝑥 −
𝐿
6
〉9 + 𝑅-𝑥 − 𝑃 〈𝑥 −

𝐿
3
〉 +

𝑞 〈𝑥 − 2𝐿3 〉
'

2
−
𝑞 〈𝑥 − 𝐿3〉

'

2
 

 

Integrating with respect to 𝑥 to determine an expression for the slope: 

 𝐸𝐼
d𝑦
d𝑥

= 𝑀8 〈𝑥 −
𝐿
6
〉 +

𝑅-𝑥'

2
−
𝑃 〈𝑥 − 𝐿3〉

'

2
+
𝑞 〈𝑥 − 2𝐿3 〉

(

6
−
𝑞 〈𝑥 − 𝐿3〉

(

6
+ 𝐴 (22) 

 

Integrating with respect to 𝑥 again to determine an expression for the deflection: 

 𝐸𝐼𝑦 =
𝑀8 〈𝑥 −

𝐿
6〉
'

2
+
𝑅-𝑥(

6
−
𝑃 〈𝑥 − 𝐿3〉

(

6
+
𝑞 〈𝑥 − 2𝐿3 〉

;

24
−
𝑞 〈𝑥 − 𝐿3〉

;

24
+ A𝑥 + B (23) 

 

Using boundary conditions for the determination of the constants of integration: 

Boundary condition 1: at 𝑥 = 0, 𝑦 = 0 (i.e. at this support position there is no deflection) 

Applying this to equation (23): 

B = 0 

 

Boundary condition 2: at 𝑥 = 𝐿, 𝑦 = 0 (i.e. at this support position there is no deflection) 

Applying this to equation (23) and substituting in values for 𝑀8, 𝑃, 𝑞, 𝐿, 𝑅- and B: 

A = −
583
432

 

 

The slope and deflection at 𝑥 = 2
'
 can now be evaluated by using equations (22) and (23), respectively.  

Substituting 𝑥 = 2
'
 into (22) and (23) and applying Macaulay’s convention gives: 
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d𝑦
d𝑥

=
1
𝐸𝐼
A
𝑀8𝐿
3

+
𝑅-𝐿'

8
−
𝑃𝐿'

72
−

𝑞𝐿(

1296
+ 𝐴B 

and 

𝑦 =
1
𝐸𝐼
A
𝑀8𝐿'

18
+
𝑅-𝐿(

48
−
𝑃𝐿(

1296
−

𝑞𝐿;

31104
+
A𝐿
2
+ BB 

 

Note that in each of the above expressions, the term related to the added counterbalancing UDL, i.e. 
=〈#4!"# 〉

#

:
 and 

=〈#4!"# 〉
$

';
, respectively, has been removed as 𝑥 < 𝑐 and so the contents of the Macaulay brackets in these terms is 

negative and so the terms are set to zero. In all of the other terms with Macaulay brackets, these have been replaced 
with regular brackets as the contents are positive and so Macaulay’s convention has been satisfied. 

 

Substituting in values of 𝐸, 𝐼, 𝐿, 𝑀8, 𝑃, 𝑞, 𝑅-, A and B gives: 

d𝑦
d𝑥

= 2.838 × 104(	rad 

and 

𝑦 = −0.01026	m = 	−10.26	mm 

 

7. Statically Indeterminate Problems 

Macaulay’s method can also be used to solve for the slopes and deflections of statically indeterminate beams. A beam 
is statically indeterminate when the reaction forces and/or bending moments cannot be determined by the equations 
of statics alone. An example of this is a clamped-clamped beam subjected to a point load, as shown in Figure 19. 

 

 

Figure 19 

 

Figure 20 shows a free-body-diagram of the beam. 

 

 

!
"
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Figure 20 

 

It can be seen from Figure 20 that the end reactions are 𝑅-, 𝑀-, 𝑅., and 𝑀.; a reaction force and a reaction bending 
moment which restrain the displacement and rotation, respectively, at both ends of the beam. There are therefore 
four unknowns which cannot be solved for by equilibrium alone. We therefore continue as before, but this time 
without knowing the reactions. 

 

Figure 21 shows the result of taking the left-hand end A as the origin and sectioning the beam after the discontinuity. 

 

 

Figure 21 

 

Taking moments about the section position: 

𝑀 + 𝑃〈𝑥 − 𝑎〉 = 𝑅-𝑥 +𝑀- 

∴ 𝑀 = 𝑅-𝑥 +𝑀- − 𝑃〈𝑥 − 𝑎〉 

 

Substituting this into equation (8): 

𝐸𝐼
d'𝑦
d𝑥'

= 𝑅-𝑥 +𝑀- − 𝑃〈𝑥 − 𝑎〉 

 

Integrating with respect to 𝑥 to determine an expression for the slope: 

 𝐸𝐼
d𝑦
d𝑥

=
𝑅-𝑥'

2
+𝑀-𝑥 −

𝑃〈𝑥 − 𝑎〉'

2
+ A (24) 

 

Integrating with respect to 𝑥 again to determine an expression for the deflection: 

!! !
"

#"! ""

!"

!! !
"
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	$
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 𝐸𝐼𝑦 =
𝑅-𝑥(

6
+
𝑀-𝑥'

2
−
𝑃〈𝑥 − 𝑎〉(

6
+ A𝑥 + B (25) 

 

Equations (24) and (25) contain four unknowns, namely 𝑀- and 𝑅- and the integration constants A and B. In this case 
we can use four boundary conditions to solve for these four unknowns. 

 

Boundary condition 1: at 𝑥 = 0, 𝑦 = 0 (i.e. at this clamp position there is no deflection) 

Applying this to equation (25): 

B = 0 

 

Boundary condition 2: at 𝑥 = 0, !"
!#

 = 0 (i.e. at this clamp position there is no rotation) 

Applying this to equation (24): 

A = 0 

 

Boundary condition 3: at 𝑥 = 𝐿, 𝑦 = 0 (i.e. at this clamp position there is no deflection) 

Applying this to equation (25): 

 0 =
𝑅-𝐿(

6
+
𝑀-𝐿'

2
−
𝑃(𝐿 − 𝑎)(

6
 (26) 

 

Boundary condition 4: at 𝑥 = 𝐿, !"
!#

 = 0 (i.e. at this clamp position there is no rotation) 

Applying this to equation (24): 

0 =
𝑅-𝐿'

2
+𝑀-𝐿 −

𝑃(𝐿 − 𝑎)'

2
 

 ∴ 𝑀- =
𝑃(𝐿 − 𝑎)' − 𝑅-𝐿'

2𝐿
 (27) 

 

Substituting equation (27) into equation (26): 

𝑅- =
𝑃(𝐿( − 3𝐿𝑎' + 2𝑎()

𝐿(
 

Substituting this into equation (27): 

𝑀- = −
𝑃𝑎(𝐿' − 2𝐿𝑎 + 𝑎')

𝐿'
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Substituting these expressions for 𝑅- and 𝑀- into equations (24) and (25): 

 𝐸𝐼
d𝑦
d𝑥

=
𝑃(𝐿( − 3𝐿𝑎' + 2𝑎()

2𝐿(
𝑥' −

𝑃𝑎(𝐿' − 2𝐿𝑎 + 𝑎')
𝐿'

𝑥 −
𝑃〈𝑥 − 𝑎〉'

2
 (28) 

and 

 𝐸𝐼𝑦 =
𝑃(𝐿( − 3𝐿𝑎' + 2𝑎()

6𝐿(
𝑥( −

𝑃𝑎(𝐿' − 2𝐿𝑎 + 𝑎')
2𝐿'

𝑥' −
𝑃〈𝑥 − 𝑎〉(

6
 (29) 

 

Special Case – Centrally Loaded Clamped-Clamped Beam 

In the case of the beam shown in Figure 19 being loaded at the centre position, and evaluating for the slope and 

deflection at this position, i.e. 𝑎 = 2
'
= 𝑥, equations (28) and (29) give: 

d𝑦
d𝑥

= 0 

and  

𝑦 = −
𝑃𝐿(

192𝐸𝐼
 

 

As this beam is loaded and supported symmetrically, it makes sense that the slope at the centre position is zero. 
Additionally, as the single applied load is downwards, it would be expected that the deflection at the centre of the 
beam would also be downwards and therefore negative (according to the sign convention defined in section 2 of these 
notes, i.e. 𝑦 is positive in the upwards direction). 

 

It is interesting to note that clamping the ends of a beam which is carrying a single point load at its centre position, 
results in a deflection which is 25% of the deflection of a simply supported equivalent (see equation (17)). 
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Mechanics of Solids – Elastic-Plastic Deformations Notes 

 

Learning Summary 

1. Know the shapes of uniaxial stress-strain curves and the elastic-perfectly-plastic approximation (knowledge); 

2. Know the kinematic and isotropic material behaviour models used to represent cyclic loading behaviour 
(knowledge); 

3. Understand elastic-plastic bending of beams (comprehension) and be able to use equilibrium, compatibility and 
𝜎-𝜀 behaviour to solve these types of problems for deformation and stress state (application); 

4. Understand elastic-plastic torsion of shafts (comprehension) and be able to use equilibrium, compatibility and 𝜏-
𝛾 behaviour to solve these types of problems for deformation and stress state (application); 

5. Be able to determine residual deformations and residual stresses in beams under bending and shafts under torsion 
(application). 

 

1. Introduction 

When materials are subjected to an increasing load (or stress), the strain response is often such that there is a linear 
(elastic) region in the stress-strain plot followed by a non-linear (plastic) region, as shown schematically in Figure 1. 
The ability to predict this material behaviour is extremely important, within many applications, in order to determine 
maximum allowable loads, that can be applied to components. These allowable loads are usually based on both the 
displacement this load causes as well as the remaining (residual) deformation upon unloading. 

 

 

Figure 1 

 

Several mathematical models can be used to estimate this material behaviour. 
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2. Elastic-Plastic Material Behaviour Models 

Elastic-perfectly-plastic (EPP) 

In this case, there is assumed to be no material hardening upon yield. I.e., once the yield stress, 𝜎!, is reached, further 
straining causes no further increase in stress, as shown in Figure 2.  

 

 

Figure 2 

 

Figure 2 shows an EPP stress-strain curve for a material in tension. However, this behaviour is also applicable in 
compression. I.e., if the loading is reversed, the behaviour shown in Figure 2 can be extended to that shown in Figure 
3, where it can be seen that the stress magnitude increases in compression until the compressive yield stress, −𝜎!, is 
reached, after which no further change to the stress response occurs with increasing compressive strain magnitude. 

 

 

Figure 3 

 

If the loading is then cycled between tension and compression, the material will continue to behave in the same way 
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(regardless of any previous plastic deformation) resulting in the hysteresis loop shown in Figure 4. 

 

 

Figure 4 

 

For EPP material behaviour, as loading conditions cause yielding (plasticity), there is no change to the yield surface, 
shown in Figure 5 (in blue for the von Mises yield criterion and in red for the Tresca yield criterion), in the principal 
stress-space.  

 

 

Figure 5 

 

EPP, is a good material model for mild steel, for example, which demonstrates moderate plasticity.  

 

Isotropic Hardening 

For materials which harden, as shown in tension, for both linear and non-linear cases, in Figure 2, this hardening 
behaviour can also be observed as changes to the yield surface. For the case of isotropic hardening behaviour, when 
the loading state, shown by the red arrow in Figure 6a, reaches the point of causing yielding (plasticity), i.e., point a, 
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the yield surface will begin to grow. Point a, the yield point, is also shown on the equivalent stress-strain curve in 
Figure 6c. As the loading state is further increased to point b, as shown in Figure 6b and 6c, the yield surface remains 
centred at the same position, but its radius grows in all directions by an amount governed by the magnitude of the 
loading. 

 

 

Figure 6 

 

If the loading is then reversed, as shown in Figure 7a, further plasticity (and therefore hardening) does not occur until 
the magnitude of the reserved loading is such that the edge of the increased yield surface, point c, is reached. This can 
also be represented on the equivalent stress-strain curve, as shown in Figure 7c. This position of compressive yield is 
at a larger load magnitude than if loaded in this direction originally. This is due to the growth of the yield surface 
(isotropic hardening) during the prior tensile loading. As the compressive load magnitude is further increased to point 
d, as shown in Figure 7b and 7c, the yield surface again remains centred at the same position, but its radius grows 
further in all directions by an amount governed by the magnitude of the loading. 
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Figure 7 

 

The blue loading curve shown in Figure 7c shows how the material would behave under a further tensile loading and 
shows that again, further plasticity (and therefore hardening) does not occur until the magnitude of the loading is such 
that the edge of the increased yield surface, point e, is reached. 
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Kinematic Hardening 

In the case of kinematic hardening behaviour, when the loading state reaches the point of causing yielding within the 
material, i.e., point a in Figure 8a, the yield surface begins moves in the direction of the loading. Point a, the yield 
point, is also shown on the equivalent stress-strain curve in Figure 8c. As the load is further increased to point b, shown 
in Figure 8b and 8c, the yield surface remains the same size (diameter of 2𝜎!") but moves in the direction of the loading 
by an amount governed by the magnitude of the loading.  

 

 

Figure 8 

 

If the loading is then reversed, as shown in Figure 9a, further plasticity (and therefore hardening) will occur at position 
c. This can also be represented on the equivalent stress-strain curve, as shown in Figure 9c. This position of 
compressive yield is now at a lower load magnitude than if loaded in this direction originally, due to the movement of 
the yield surface (kinematic hardening) during the prior tensile loading. As the compressive load magnitude is further 
increased to point d, as shown in Figure 9b and 9c, the yield surface remains the same size, but its centre again moves 
in the direction of the loading by an amount governed by the magnitude of the loading. 
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Figure 9 

 

The blue loading curve shown in Figure 9c shows how the material would behave under a further tensile loading and 
shows that again, further plasticity (and therefore hardening) occurs at a lower stress magnitude, point e, than in the 
previous tensile and compressive loadings, due to the movement of the yield surface (kinematic hardening) during the 
prior compressive loading. 

 

In the descriptions of isotropic and kinematic hardening above, the loading was chosen to be in the 1-direction, 
however, it is important to note that the applied loading could be in any direction, with the concepts described above 
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remaining valid. It should also be noted that in both cases, the von Mises yield criterion and non-linear hardening were 
chosen for demonstrative purposes, but the same concepts would apply in the case of the Tresca yield criterion and/or 
linear hardening, respectively. 

 

In reality, it is not common for materials to harden in a purely isotropic or kinematic manner, but rather a mixture of 
these. There are material behaviour models (e.g., the unified visco-plasticity model) which account for both isotropic 
and kinematic hardening. Also, whereas isotropic and kinematic hardening represent growth and movement of the 
yield surface, respectively, other material hardening models represent a change in the shape of the yield surface.  

 

In the following analyses related to the elastic-plastic deformation of components (e.g., beams in bending and torsion 
of shafts), only the EPP material behaviour model will be considered. 

 

3. Elastic-Plastic Bending of Beams 

Figure 10a shows a beam which is subjected to a bending moment, 𝑀. The rectangular cross-sectional area of the 
beam is shown in Figure 10b. 

 

 

Figure 10 

 

Assuming that the magnitude of the bending moment is not high enough to cause plasticity (yielding) within the beam, 
the elastic beam bending equation can be used to describe the stress distribution, as a function of 𝑦 (distance from 
the neutral axis), as: 

 𝜎 =
𝑀𝑦
𝐼

 (1) 

 

In this elastic case then, the stress distribution, as a function of 𝑦, throughout the cross-section, is linear, as shown in 
Figure 11. 

 

	"

	#!!
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Figure 11 

 

If the bending moment is increased to a magnitude which is just high enough to induce plasticity within the beam, this 
plasticity will occur at the positions furthest away from the neutral axis, i.e., at the positions of maximum 𝑦 magnitude 
(top and bottom edges of the cross-section). As the bending moment is further increased, the plasticity spreads from 
the outer edges, to further within the cross-section (towards the neutral axis) as shown in Figure 12. As can be seen 
from Figure 12, the material behaviour demonstrated is elastic perfectly-plastic, as once the material has yielded, at 
𝑦 > 𝑎 and 𝑦 < −𝑎, no further increase in stress magnitude is observed.  

 

 

Figure 12 

 

Moment equilibrium can be used to relate the applied bending moment, 𝑀, to the position as which yielding occurs, 
𝑎, as: 

 𝑀 = . 𝑦𝜎d𝐴
#

 (2) 

 

Equation (2) shows that the sum of the moments caused as a result of the stress, 𝜎, in each unit of area, d𝐴, in the 
cross-section, must be equal to the applied bending moment, 𝑀. This can be seen in the right-hand side of the above 
equation as stress, 𝜎, multiplied by area, 𝐴, gives force, 𝐹, and force multiplied by perpendicular distance, 𝑦, gives 
bending moment. I.e., for each unit of area, d𝐴: 

𝜎 × d𝐴 = dF 

and 

d𝐹 × 𝑦 = d𝑀 

Neutral 
axis

!

"

!

"!!
−!!

#

−#



  
10 

Equation (2) can be rewritten as: 

 𝑀 = . 𝑦𝜎𝑏d𝑦

$
%&

'$ %&

 (3) 

where 𝑏 and 𝑑 are the width (or breadth) and depth of the cross-section, respectively, as shown in Figure 10, and 
where: 

d𝐴 = 𝑏d𝑦 

 

Recognising the symmetry about the neutral axis in the stress distribution magnitudes, equation (3) can be rewritten 
as: 

𝑀 = 2. 𝑦𝜎𝑏d𝑦

$
%&

(

 

 

Substituting the expressions for stress for each of the elastic (0 > 𝑦 > 𝑎) and plastic (𝑎 > 𝑦 > 𝑑
27 ) regions, i.e., 𝜎!

)
*

 

and 𝜎!, respectively, into this gives: 

𝑀 = 2.𝑦 8𝜎!
𝑦
𝑎
9𝑏d𝑦

*

(

+ . 𝑦𝜎!𝑏d𝑦

$
%&

*

 

= 2𝑏𝜎! ;
𝑑%

8
−
𝑎%

6
> 

 

In order for the radius of curvature of the beam, 𝑅, due to the applied bending moment, 𝑀, to be calculated, both 
compatibility and a stress-strain relationship are required. As the region of the cross-section between −𝑎 < 𝑦 < 𝑎 
has only behaved elastically, the elastic beam bending equation can be applied. I.e.: 

𝑀
𝐼
=
𝜎
𝑦
=
𝐸
𝑅

 

∴
𝑦
𝑅
=
𝜎
𝐸
= 𝜀 

 ∴ 𝑅 =
𝑦
𝜀

 (4) 

where 𝜀 is the strain related to the stress 𝜎. 

 

As the beam behaves as one body, the entirety of the beam (both the elastic and plastic regions) must share this 
common radius of curvature, 𝑅. This is the compatibility requirement mentioned above.  
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Again, as the region of the cross-section between −𝑎 < 𝑦 < 𝑎 has only behaved elastically, Hooke’s law applies here, 
and so: 

𝜎 = 𝐸𝜀 

 

This is the required stress-strain relationship mentioned above. 

 

Rearranging for 𝜀 and substituting this into equation (4): 

 𝑅 =
𝐸𝑦
𝜎

 (5) 

 

Substituting values for 𝑦 and 𝜎, from within the elastic region, into this equation, allows for 𝑅 to be calculated. A 
convenient value of 𝑦 to use is 𝑎 (which is the outermost point of the elastic region), for which the corresponding 
value of 𝜎 is 𝜎!. Therefore: 

𝑅 =
𝐸𝑎
𝜎)

 

 

As plasticity has occurred within the beam during loading, on unloading the stress distribution and radius of curvature 
will not return to zero. Rather a residual stress distribution and residual radius of curvature will remain. If we assume 
that the stress change which occurs on unloading is purely elastic, then the stress change, Δ𝜎, can be calculated from 
equation (1) as: 

Δ𝜎 =
Δ𝑀𝑦
𝐼

 

 

The maximum stress change, Δ𝜎+",, will therefore occur at 𝑦+",, and so: 

Δ𝜎+", =
Δ𝑀 × 𝑦+",

𝐼
=
−𝑀 ×±𝑑 27

𝐼
 

where the change in bending moment on unloading, Δ𝑀, is −𝑀 and 𝑦+", = ±𝑑 27 . 

 

Therefore, at 𝑦 = 𝑑
27  (top edge): 

Δ𝜎-).$ %& / =
−𝑀𝑑
2𝐼

 

and at 𝑦 = −𝑑 27  (bottom edge): 

Δ𝜎-).'$ %& / =
𝑀𝑑
2𝐼
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As the unloading behaviour has been assumed to be elastic, the stress variation between these two values, relating to 
the top and bottom edges, will be linear, as shown by the unloading part of Figure 13. 

 

 

Figure 13 

 

Figure 13 also shows that by summing the loaded stress distribution on the cross-section with the stress change which 
occurs on unloading, the residual stress distribution can be obtained. 

 

It is clear that the residual stresses are well below the yield stress, so reverse yielding does not occur, and therefore 
the elastic unloading assumption made, is correct. 

 

This residual stress distribution will be accompanied by a residual radius of curvature, which can be calculated by 
substituting unloaded beam values for 𝑦 and 𝜎 into equation (5), which again relate to a position that has only been 
subjected to elastic behaviour. As before (under loaded conditions), a convenient value of 𝑦 to use is 𝑎 (which is the 
outermost point of the elastic region), for which the corresponding value of 𝜎 can be taken from the residual stress 
distribution given in Figure 13 and is shown labelled as 𝜎0!  (i.e., the residual stress, 𝜎0, at position 𝑎). 

 

On releasing the moment, the radius of curvature increases. This change of curvature is called 'spring back' and is 
particularly important when bending beams to specified radii of curvature.  

 

4. Worked Example – Elastic-Perfectly Plastic I-Beam Subjected to a Pure Bending Moment 

Problem 

Figure 14 shows the cross-section of a straight I-beam which is subjected to a pure bending moment, 𝑀.  

 

Elastic
unloading
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Figure 14 

 

Calculate: 

a. the maximum allowable value of 𝑀 if the web of the section is not to be subjected to any plasticity.   
b. the stress distribution and radius of curvature upon the application of 𝑀 
c. the stress distribution and radius of curvature upon unloading 

 

The material can be assumed to be elastic-perfectly-plastic with a yield stress, 𝜎) = 215	MPa, and Young’s Modulus, 
𝐸 = 200	GPa. 

 

Solution 

As it is known that the full depths of each flange are allowed to yield, but the web is to remain fully elastic, the resulting 
stress distribution due to the application of the maximum allowable bending moment, 𝑀, is as shown in Figure 15. 

 

 

Figure 15 

 

Moment Equilibrium 

Balancing the moments due to stresses in the elastic and plastic regions with the applied moment: 
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𝑀 = . 𝑦𝜎𝑑𝐴
#

 

= . 𝑦𝜎𝑏d𝑦

$
%&

'$ %&

 

 

Due to the symmetry of the stress distribution magnitude about the neutral axis and substituting in the elastic and 
plastic terms for 𝜎, this can be rewritten as: 

𝑀 = 2L.𝑦 8𝜎!
𝑦
𝑎
9 𝑏1d𝑦

*

(

+ . 𝑦𝜎!𝑏2d𝑦

$
%&

*

M 

= 2𝜎!L
𝑏1
𝑎
. 𝑦%d𝑦
*

(

+ 𝑏2 . 𝑦d𝑦

$
%&

*

M 

where 𝑏1 and 𝑏2 are the widths of the web and flange sections of the beam, respectively, and 𝑎 is the value of 𝑦 
where the cross-section transitions from the web to the flange. 

 

Therefore,  

𝑀 = 2𝜎! N
𝑏1
𝑎
O
𝑦3

3
Q
(

*

+ 𝑏2 O
𝑦%

2
Q
*

$
%&

R 

= 2𝜎! S𝑏1
𝑎%

3
+ 𝑏2 ;

𝑑%

8
−
𝑎%

2
>T 

∴ 𝑴 = 𝟑𝟔, 𝟑𝟑𝟓, 𝟎𝟎𝟎	𝐍𝐦𝐦 = 𝟑𝟔. 𝟑𝟒	𝐤𝐍𝐦 

 

Compatibility 

As the region of the cross-section between −𝑎 < 𝑦 < 𝑎 has only behaved elastically, the elastic beam bending 
equation can be applied and rearranged to give: 

𝑅 =
𝑦
𝜀

 

 

As the beam behaves as one body, this expression for 𝑅 can be applied to any value of 𝑦. 
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Stress-Strain Relationship 

Again, as the region of the cross-section between −𝑎 < 𝑦 < 𝑎 has only behaved elastically, Hooke’s law applies here, 
which can be substituted into the above expression for 𝑅 to give: 

𝑅 =
𝐸𝑦
𝜎

 

 

Substituting values for 𝑦 and 𝜎 from the outermost point of the elastic region gives: 

𝑅45"6 =
𝐸𝑎
𝜎)

 

∴ 𝑹𝐥𝐨𝐚𝐝 = 𝟐𝟕, 𝟗𝟎𝟔. 𝟗𝟖	𝐦𝐦 = 𝟐𝟕. 𝟗𝟏	𝐦 

 

Unloading 

Assuming that the stress change caused by unloading is purely elastic, then from the elastic beam bending equation: 

∆𝜎 =
∆𝑀 × 𝑦

𝐼
 

 

Therefore, at the top and bottom edges: 

Δ𝜎-).$ %& / =
−𝑀 × 𝑑 27

𝐼
=
−𝑀𝑑
2𝐼

=
−36,335,000 × 100
2 × 6,803,333.33

= −267.04	MPa 

and  

Δ𝜎-).'$ %& / =
−𝑀 ×−𝑑 27

𝐼
=
𝑀𝑑
2𝐼

= 267.04	MPa 

 

Where: 

𝐼 = ;
𝑏𝑑3

12
>
;<=>?

− ;
𝑏𝑑3

12
>
@*AB

=
100 × 1003

12
− 2;

42.5 × 603

12
> = 8,333,333.33	mmC − 1,530,000	mmC 

= 6,803,333.33	mmC 

 

Since the unloading behaviour has been assumed to be elastic, the stress variation between these two values, relating 
to the top and bottom edges, will be linear, as shown in the unloading section of Figure 16.  
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Figure 16 

 

The equation of the linear unloading relationship is: 

 𝑦 = 𝑚𝜎 + 𝑐 (6) 

where, as the line passes through the origin: 

𝑐 = 0 

and the gradient, 𝑚, can be calculated by choosing a corresponding set of 𝑦 and 𝜎 values, e.g., those applicable to the 
top edge, i.e., 𝑦 = 50	mm and 𝜎 = −267.04	MPa and substituting these into equation (6) as: 

∴ 50 = 𝑚 ×−267.04 

∴ 𝑚 = −0.187 

 

This value for 𝑚 allows for the interpolation of the unloading stress distribution to determine the 𝜎 value at 𝑦 =
30	mm, from equation (6) as: 

30 = −0.187𝜎 

∴ 𝜎 = −160.43 

 

The loading and unloading stress distributions can now be summed together in order to determine the residual stress 
distribution as follows. 

At 𝑦 = 50	mm: 

𝜎?"# = 𝜎45"6"# + 𝜎DE45"6"# = 215	MPa − 267.04	MPa = −52.04	MPa 

At 𝑦 = 30	mm: 

𝜎?$# = 𝜎45"6$# + 𝜎DE45"6$# = 215	MPa − 160.43	MPa = 54.57	MPa 

At 𝑦 = 0	mm: 

𝜎?# = 𝜎45"6# + 𝜎DE45"6# = 0	MPa − 0	MPa = 0	MPa 

!

"
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At 𝑦 = −30	mm: 

𝜎?%$# = 𝜎45"6%$# + 𝜎DE45"6%$# = −215	MPa + 160.43	MPa = −54.57	MPa 

At 𝑦 = −50	mm: 

𝜎?%"# = 𝜎45"6%"# + 𝜎DE45"6%"# = −215	MPa + 267.04	MPa = 52.04	MPa 

 

The residual section of Figure 16 shows this in graphical form. 

 

As the residual stresses are well below the yield stress (±215 MPa), reverse yielding will not occur, and therefore the 
elastic unloading assumption made, is correct.  

 

This residual stress distribution will be accompanied by a residual radius of curvature, which can be calculated by 
substituting unloaded beam values for 𝑦 and 𝜎 into the same equation as above for the loaded equivalent, which again 
relate to a position that has only been subjected to elastic behaviour. As before (under loaded conditions), a 
convenient value of 𝑦 to use is 𝑎 = 30	mm (which is the outermost point of the elastic region), for which the 
corresponding value of 𝜎 can be seen, from Figure 16, to be 54.57 MPa. I.e.: 

𝑅DE45"6 =
𝐸𝑎
𝜎0!

 

∴ 𝑹𝐮𝐧𝐥𝐨𝐚𝐝 = 𝟏𝟎𝟗, 𝟗𝟓𝟎. 𝟓𝟐	𝐦𝐦 = 𝟏𝟎𝟗. 𝟗𝟓	𝐦 

 

5. Elastic-Plastic Torsion of Shafts  

Figure 17a shows a shaft which is subjected to a torque, 𝑇. The circular cross-sectional area of the shaft is shown in 
Figure 17b. 

 

 

Figure 17 

 

Assuming that the magnitude of the torque is not high enough to cause plasticity (yielding) within the shaft, the elastic 
shaft torsion equation can be used to describe the shear stress distribution, as a function of 𝑟 (radius of the shaft), as: 

 𝜏 =
𝑇𝑟
𝐽

 (7) 

(a) (b)

!

!
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In this elastic case then, the shear stress distribution, as a function of 𝑟, throughout the cross-section is linear, as 
shown in Figure 18. 

 

 

Figure 18 

 

If the torque is increased to a magnitude which is just high enough to induce plasticity in the shaft, this plasticity will 
occur at the positions furthest away from the centre of the cross-section, i.e., at the positions of maximum 𝑟 
magnitude (circumference of the cross-section). As the torque is further increased, the plasticity spreads from the 
outer edge, to further within the cross-section (towards the centre) as shown in Figure 19. As can be seen from Figure 
19, the material behaviour demonstrated is elastic perfectly-plastic, as once the material has yielded, at 𝑟 > 𝑎, no 
further increase in stress magnitude is observed. 

 

 

Figure 19 

 

Torque equilibrium can be used to relate the applied torsion, 𝑇, to the position as which yielding occurs, 𝑎, as: 

 𝑇 = . 𝑟𝜏𝑑𝐴
#

 (8) 

 

Equation (8) shows that the sum of the torques caused as a result of the shear stress, 𝜏, in each unit of area, d𝐴, in the 
cross-section, must be equal to the applied torque, 𝑇. This can be seen in the right-hand side of the above equation 
as shear stress, 𝜏, multiplied by area, 𝐴, gives units of force, and force multiplied by perpendicular distance, 𝑟, gives 
torque. 

 

Equation (8) can be rewritten as: 

!

"

!

"!!

"
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 𝑇 = 2𝜋. 𝜏𝑟%d𝑟
H

(

 (9) 

where 𝑅 is the outer radius of the cross-section, and: 

d𝐴 = 2𝜋𝑟d𝑟 

 

Substituting the expressions for shear stress for each of the elastic (0 > 𝑟 > 𝑎) and plastic (𝑎 > 𝑟 > 𝑅) regions, i.e., 
𝜏)

?
*

 and 𝜏), respectively, into equation (9) gives: 

𝑇 = 2𝜋. 8𝜏)
𝑟
𝑎
9 𝑟%d𝑟

*

(

+ 2𝜋. 𝜏)𝑟%d𝑟
H

*

 

= 2𝜋𝜏) ;
𝑅3

3
−
𝑎3

12
> 

 

In order for the twist, 𝜃, of the shaft, due to the applied torque, 𝑇, to be calculated, both compatibility and a shear 
stress-shear strain relationship are required. As the region of the cross-section between 0 < 𝑟 < 𝑎 has only behaved 
elastically, the elastic shaft torsion equation can be applied. I.e.: 

𝑇
𝐽
=
𝜏
𝑟
=
𝐺𝜃
𝐿

 

∴
𝑟𝜃
𝐿
= 𝛾 8=

𝜏
𝐺
9 

 ∴ 𝜃 =
𝛾𝐿
𝑟

 (10) 

where 𝛾 is the shear strain related to the shear stress 𝜏. 

 

As the shaft behaves as one body, the entirety of the shaft (both the elastic and plastic regions) must share this 
common twist, 𝜃. This is the compatibility requirement mentioned above.  

 

Again, as the region of the cross-section between 0 < 𝑟 < 𝑎 has only behaved elastically, Hooke’s law applies here, 
therefore: 

𝜏 = 𝐺𝛾 

 

This is the required shear stress-shear strain relationship mentioned above. Rearranging for 𝛾 and substituting this 
into equation (10): 

 𝜃 =
𝜏𝐿
𝐺𝑟

 (11) 
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Substituting values for 𝑟 and 𝜏, from within the elastic region, into this equation, allows for 𝜃 to be calculated. A 
convenient value of 𝑟 to use is 𝑎 (which is the outermost point of the elastic region), for which the corresponding value 
of 𝜏 is 𝜏!. Therefore: 

𝜃 =
𝜏)𝐿
𝐺𝑎

 

 

As plasticity has occurred within the shaft during loading, on unloading the shear stress distribution and twist will not 
return to zero. Rather a residual shear stress distribution and residual twist will remain. If we assume that the shear 
stress change which occurs on unloading is purely elastic, then the shear stress change, Δ𝜏, can be calculated from 
equation (7) as: 

Δ𝜏 =
Δ𝑇 × 𝑟
𝐽

 

 

The maximum shear stress change, Δ𝜏+",, will therefore occur at 𝑟+",, and so: 

Δ𝜏+", =
Δ𝑇 × 𝑟+",

𝐽
=
−𝑇𝑅
𝐽

 

where the change in torque on unloading, Δ𝑇, is −𝑇 and 𝑟+", = 𝑅. 

 

As the unloading behaviour has been assumed to be elastic, the shear stress variation through the cross-section will 
be linear, as shown by the unloading part of Figure 20. 

 

 

Figure 20 

 

Figure 20 also shows that by summing the loaded shear stress distribution on the cross-section with the shear stress 
change which occurs on unloading, the residual shear stress distribution can be obtained. 

 

It is clear that the residual shear stresses are well below the yield shear stress, so reverse yielding does not occur, and 
therefore the elastic unloading assumption made, is correct. 
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This residual shear stress distribution will be accompanied by a residual shaft twist, which can be calculated by 
substituting unloaded beam values for 𝑟 and 𝜏 into equation (11), which again relate to a position that has only been 
subjected to elastic behaviour. As before (under loaded conditions), a convenient value of 𝑟 to use is 𝑎 (which is the 
outermost point of the elastic region), for which the corresponding value of 𝜏 can be taken from the residual shear 
stress distribution given in Figure 20 and is shown labelled as 𝜏0!  (i.e., the residual shear stress, 𝜏0, at position 𝑎). 



MMME2053 – Mechanics of Solids – Fatigue & Fracture 1 

 

1 Fatigue and Fracture 
 

Learning Summary 

1. Know the various stages leading to fatigue failure (knowledge); 

2. Know the basis of the total life and of the damage tolerant approaches to estimating 

the number of cycles to failure (knowledge); 

3. Be able to include the effects of mean and alternating stress on cycles to failure 

using the Gerber, modified Goodman and Soderberg methods (application); 

4. Be able to include the effect of a stress concentration on fatigue life (application); 

5. Be able to apply the S-N design procedure for fatigue life (application); 

6. Know the meaning of linear-elastic fracture mechanics (LEFM) (knowledge); 

7. Know what the three crack tip loading modes are (knowledge); 

8. Be able to use the energy and stress intensity factor (Westergaard crack tip stress 

field) approaches to LEFM (application); 

9. Know the meaning of small-scale yielding and fracture toughness (knowledge); 

10. Understand the Paris equation for fatigue crack growth and the effects of the mean 

and alternating components of the stress intensity factor 

(knowledge/comprehension). 

 

1.1 Fatigue 

1.1.1 Introduction 

Fatigue failure of components and structures results from cyclic (or repeated) loading and 

from the associated cyclic stresses and strains, as opposed to failure due to monotonic 

or static stresses or strains, such as buckling or plastic collapse due to excessive plastic 

deformation yielding. The topic of fatigue is extremely important in mechanical 

engineering, since machines have moving parts, which in turn give rise to stresses and 

strains which may vary with time, typically in a repetitive fashion. For example, the axle of 

a car which will transmit a time-varying torque, that changes from zero to some finite value 

when the car is put into gear and driven (and back to zero again when the car is taken out 

of gear).  

 



MMME2053 – Mechanics of Solids – Fatigue & Fracture 2 

 

An important design consideration, with respect to fatigue, is the fact that fatigue failure 

can occur at stresses which are well below the ultimate tensile strength of the material 

and often below the yield strength. 

 

1.1.2 Basic phenomena 

The failure mechanism for an initially un-cracked component with a smooth (polished) 

surface can be split into three parts, namely crack initiation, crack propagation and final 

fracture, as follows: 

(i) Stage I crack growth: The micro-structural phenomenon which causes the initiation 

of a fatigue cracks is the development of persistent slip bands at the surfaces of 

the specimen. These persistent slip bands are the result of dislocations moving 

along crystallographic planes leading to both slip band intrusions and extrusions 

on the surface. These act as excellent stress concentrations and can thus lead to 

crack initiation. Crystallographic slip is primarily controlled by shear stresses rather 

than normal stresses so that fatigue cracks initially tend to grow in a plane of 

maximum shear stress range. This stage leads to short cracks, usually only of the 

order of a few grains.  

 
Figure 1.1: Persistent slip bands in ductile metals subjected to cyclic stress 

 

(ii) Stage II crack growth: As cycling continues, the fatigue cracks tend to coalesce 

and grow along planes of maximum tensile stress range.  

(iii) Final fracture; this occurs when the crack reaches a critical length and results in 

either ductile tearing (plastic collapse) at one extreme, or cleavage (brittle fracture) 

at the other extreme. 
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Figure 1.2: Schematic of stages I and II transcrystalline microscopic fatigue crack 

growth. 

 

1.1.3 Fatigue Life Analysis 

In order to allow for fatigue in the analysis and design of components, a number of 

different approaches are adopted; two of these approaches are described here.  The more 

traditional approach is what is now referred to as the total life approach (see section 1.1.4), 

based on laboratory tests, which are carried out under either stress- or strain-controlled 

loading conditions on idealised specimens. These tests furnish the number of loading 

cycles to the initiation of a ‘measurable’ crack as a function of applied stress or strain 

parameters.  The ‘measurability’ is dictated by the resolution accuracy of the crack 

detection method employed. A typical ‘measurable’ crack is about 0.75 mm to 1 mm. The 

challenge of fatigue design is then to relate these test results to actual component lives 

under real loading conditions. The second approach is known as the damage tolerant 

approach (see section 1.2.5). This approach is based on the inclusion of fatigue as a crack 

growth process, taking account of the fact that all components have inherent flaws or 

cracks. The development of fracture mechanics techniques to predict crack growth has 

facilitated this approach as a competing technique to the total life approach. Both of the 

approaches have advantages and disadvantages; the former has more appeal to design 

engineers while the latter is more often used by material scientists and researchers. 

Nonetheless, even in routine design, the damage tolerant approach is gaining popularity. 

 

1.1.4 Total life approach 

The total life approach is based on the results of stress- and strain-controlled cyclic testing 

of laboratory test specimens of material, in order to obtain the numbers of cycles to failure 
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as a function of the applied alternating stress, for example. Figure 1.3 shows a rotating 

bending test machine set-up. This is a constant load amplitude machine since the load 

doesn’t change even with crack growth. The specimens usually have finely polished 

surfaces to minimise surface roughness effects, which would particularly affect Stage I 

growth. In this approach, no distinction is made between crack initiation and propagation. 

Stress concentration effects can be studied by machining in grooves, notches or holes. 

 

 
Figure 1.3: Rotating bending moment test apparatus for fully-reversed fatigue 

loading.  

 

Traditionally, most fatigue testing was based on fully-reversed (i.e. zero mean stress, Sm 

= 0), stress-controlled conditions and the fatigue design data was presented in the form 

of S-N curves (see Figure 1.6), which are either semi-log or log-log plots of alternating 

stress, Sa, against the measured number of cycles to failure, N, where failure is defined 

as fracture. Some of the important stress parameters for cyclic loading are shown in 

Figure 1.4. 

 
Figure 1.4: Notation used to describe constant load fatigue test cycles.  

 

Figure 1.5 contains schematic representations of two typical S-N curves obtained from 

load (or stress)-controlled tests on smooth specimens. Figure 1.5(a) shows a continuously 
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sloping curve, while Figure 1.5(b) shows a discontinuity or “knee” in the curve. A “knee” 

is only found in a few materials (notably low strength steels) between 106 and 107 cycles 

under non-corrosive conditions. The curves are normally drawn through the median life 

value (of the scatter in N) and thus represents 50 percent expected failure. The fatigue 

life, N, is the number of cycles of stress (or strain) range of a specified character that a 

given specimen sustains before failure of a specified nature occurs. Fatigue strength is a 

hypothetical value of stress range at failure for exactly N cycles as obtained from an S-N 

curve. The fatigue limit (sometimes called the endurance limit) is the limiting value of the 

median fatigue strength as N becomes very large, e.g. >108 cycles.  

 

 
Figure 1.5: Typical S-N diagrams.  

 

1.1.5 Effect of mean stress 

The alternating stress, Sa, and the mean stress, Sm, are defined in Figure 1.4. Early 

investigators of fatigue assumed that only the alternating stress affected the fatigue life of 

a cyclically-loaded component. However, it has since been established that the mean 

stress has a significant effect on fatigue behaviour, as shown in Figure 1.6. It can be seen 

that tensile mean stresses are detrimental while compressive mean stresses are 

beneficial in comparison to zero mean stresses.  
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Figure 1.6: The effect of mean stress on fatigue life. 

 

The effect of mean stress is commonly represented as a plot of Sa versus Sm for a given 

fatigue life. Attempts have been made to develop this relationship into general relations. 

Three of these common relations between allowable alternating stress for a given life as 

a function of mean stress, are shown in Figure 1.7. 
 

 
Figure 1.7: Gerber, modified Goodman and Soderberg relationships between Sa 

and Sm. 

 

The modified Goodman line assumes a linear relationship between the allowable Sa and 

the corresponding mean stress Sm, where the slope and intercepts are defined by the 

fatigue strength, Se, and the material UTS, Su, respectively. The Gerber parabola employs 

the same end-points but, in this case, the relation is defined by a parabola. Finally, the 

Soderberg line again assumes a linear relation, but this time the mean stress axis end-

point is taken as the yield stress, Sy. The modified Goodman line, for example, can be 
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extended into the compressive mean stress region to give increasing allowable alternating 

stress with increasing compressive mean stress, but this is normally taken to be horizontal 

for design purposes and for conservatism.  

 

1.1.6 Effect of stress concentrations 

Ever since the first occurrences of fatigue failure, it has been recognised that such failures 

are most commonly associated with notch-type features in components. It is impossible 

to avoid notches in engineering structures, although the effects of such notches can be 

reduced through appropriate design. The stress concentration associated with notch-type 

features leads typically to local plastic strain which eventually leads to fatigue cracking. 

Consequently, the estimation of stress concentration factors associated with various types 

of notches and geometrical discontinuities has received a lot of attention. This is typically 

expressed in terms of an elastic stress concentration factor (SCF), Kt, which is simply the 

relationship between the maximum local stress and an appropriate nominal stress, as 

follows: 

 

  

 

It was once thought that the fatigue strength of a notched component could be predicted 

as the strength of a smooth component divided by the SCF. However, this is not the case. 

The reduction is, in fact, often less than Kt and is defined by the fatigue notch factor, Kf, 

which is defined as the ratio of the smooth fatigue strength to the notched fatigue strength 

as follows: 

 

  

 

However, this fatigue notch factor is also found to vary with both alternating and mean 

stress level and thus with number of cycles to failure. Figure 1.8 shows the effect of a 

notch, with an SCF of 3.4, on the fatigue behaviour of a wrought aluminium alloy, where 

the smooth lines are for the smooth specimen and the dotted lines are for the notched 
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specimen.  

 

 
Figure 1.8: Constant life diagrams for a wrought aluminium alloy for both smooth 

and notched specimens (SCF = 3.4).  

 

Table 1.1 shows how the fatigue notch factor changes with mean stress level and fatigue 

life. Clearly, the fatigue notch factor increases from 3.2 to 5.7 from 104 cycles to 107 cycles 

at 172 MPa mean stress, but remains unchanged between these lives at 2.3 for zero 

mean stress.  

 

Table 1.1: Fatigue notch factor change with mean stress and fatigue life 

 

 

 

 

1.1.7 S-N Design Procedure for Fatigue 

Constant life diagrams plotted as Sa versus Sm, also called Goodman diagrams, as shown 

in Figure 1.9, can be used in design to give safe estimates of fatigue life and loads.  

 

Mean stress 104 cycles 107 cycles 

0 MPa 51/22 = 2.3 22/9 = 2.3 

172 MPa 42/13 = 3.2 17/3 = 5.7 
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Figure 1.9: Goodman diagram. 

 

(i) The Goodman line connects the endurance limit, Se (or long life fatigue strength), 

to the U.T.S., Su 

(ii)  The fatigue strength for zero mean stress is reduced by the fatigue notch factor, 

Kf. The stress concentration factor, Kt is used if Kf is not known. 

(iii)  For static loading of a ductile component with a stress concentration, failure still 

occurs when the mean stress is equal to the U.T.S. Failure at intermediate values 

of mean stress is assumed to be given by the dotted line. 

(iv)  In order to avoid yield of the whole cross-section of the component, the maximum 

nominal stress must be less than the yield stress, Sy , i.e. Sm+ Sa < Sy 

 This relationship gives the yield line joining Sy to Sy. 

(v) The region of the diagram nearest to the origin is the 'safe' region (can also be 

extended to include compressive yield). 

(vi) A component is assessed by plotting the point corresponding to the nominal 

alternating stress, Sa, and the nominal mean stress, Sm, i.e. not the maximum 

values associated with the notch. The factor of safety is determined from the 

position of the point relative to the safe/fail boundary. 

 i.e. factor of safety  F = OB/OA 
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A procedure similar to that described above for long life can also be used to design for a 

specified number of cycles. In this case the endurance limit and the fatigue notch factor 

are replaced by the fatigue strength and the fatigue notch factor for the specified number 

of cycles. 
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Figure 1.10: Examples of geometries/components with poor and improved fatigue 

strength. 
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1.2 Linear Elastic Fracture Mechanics (LEFM) 

 

1.2.1 Introduction 

Consider the stress concentration factor for an elliptical hole in a large, linear-elastic plate 

subjected to a remote, uniaxial stress. 

 

  
Figure 1.11: Elliptical hole in an infinite plate root radius ellipse 

 

It can be shown that the stress concentration factor is as follows:  

 

   

 

Thus, as b ® 0, the elliptical hole degenerates to a crack, and , so that the notch 

stress also goes to infinity (i.e. becomes singular), , provided the material behaviour 

remains linear elastic.  

 

The root radius for an ellipse is given by 
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and again, as the notch tip radius goes to zero, i.e. r ® 0, the notch tip stress again goes to 

infinity,  

 

   

 

The singular (infinite) state of stress at a crack tip is one of the fundamental and most 

important aspects of fracture mechanics.  

 
1.2.2 Basis of the energy approach to fracture mechanics 

Griffith (1921) studied the brittle fracture of glass and adopted an energy approach to solve 

the problem.  He reasoned that unstable crack propagation occurs only if an increment of 

crack growth, da, results in more strain energy being released than is absorbed by the 

creation of the new crack surfaces. This can be re-expressed as the change in strain energy 

U, due to crack extension, being greater than the energy absorbed by the creation of the 

new crack surfaces. Thus, if we designate the surface energy per unit area of the crack 

, then the surface energy associated with a crack of length 2a in a body of thickness B (as 

shown in the Figure 1.12) is given by: 

 
   

 

Detailed stress analysis of an elliptical hole in an infinite elastic plate has established that 

the strain energy in such a body is  

 

 
  

 

where s  is the remote stress (away from the hole) and where, for plane strain and plane 

stress, respectively,  

 

¥®®
rs

s a2ˆ

sg

ss aBW g4=

'

22

E
BaWp

sp
-=



MMME2053 – Mechanics of Solids – Fatigue & Fracture 14 

 

 
  

 

The total system energy is thus 

 

 
  

 

  
Figure 1.12: Crack in Infinite Plate 

 

According to Griffith, the critical condition for the onset of crack growth is 

 

  
 

Therefore:
 

 

 

 
 

 

where A = 2aB is the crack area and dA denotes an incremental increase in crack area. The 

total surface area of the two crack surfaces is 2A. This relationship is conventionally re-

expressed as  
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where G is called the strain energy release rate, the crack tip driving force or the crack 

extension force. Gc is a material property, which is known as the critical strain energy 

release rate, the toughness or the critical crack extension force. A high value of Gc means 

that it is difficult to cause unstable crack growth in the material whereas a low value means 

it is easy to make a crack grow unstably. Thus, copper, for example, has a value of Gc » 

106 Jm-2, whereas glass has a value of Gc » 10 Jm-2. The following relationships for plane 

stress and plane strain, respectively, follow from the above: 

 

  (plane stress)   

 

  (plane strain)   

 

Note that plane stress and plane strain are two contrasting two-dimensional assumptions 

which permit simplification of three-dimensional problems to two-dimensional ones. Plane 

stress corresponds physically to thin plate type situations while plane strain corresponds 

to thick plate type situations. Plane strain testing of fracture leads to lower values of Gc, 
so that the material property value of Gc for design purposes is taken as the plane strain 

value and is designated as GIc.  

 

The critical stress, which causes a crack to propagate in an unstable fashion, giving 

fracture, is governed by the following relationships 

 

  (plane stress)   

  

 (plane strain) 
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Since the term on the right-hand side of these equations is a material constant and since the 

term on the left hand side is so common, it is usually abbreviated to the symbol, K, which is 

referred to as the stress intensity factor and the equations can be re-expressed as: 

 
   

 

where Kc is called the critical stress intensity factor or the fracture toughness. Thus  

 

 

 

In summary, 

 

 is called the stress intensity factor 

Kc is called the fracture toughness of critical stress intensity factor 

Gc is called the toughness or the critical strain energy release rate. 

 

Note 

Most materials are not linear elastic up to failure. However, the energy approach can still 

be used if the plastic strain is restricted to a region very close to the crack tip; this is 

referred to as small scale yielding. Under these conditions, the energy release rate can 

still be reasonably accurately based on a linear elastic analysis. Also, Gc or GIc now 

includes a component associated with plastic deformation of the crack tip as well as the 

creation of the surfaces. So far, we have only considered the so-called Mode I loading 

case. There are actually three different loading modes considered in fracture mechanics, 

as shown in Figure 1.13. 

 

cKK =

cc EGK =

aK ps=



MMME2053 – Mechanics of Solids – Fatigue & Fracture 17 

 

  
Figure 1.13: Crack tip loading modes 

 

In general, the energy release rate under mixed-mode loading is given by 

 
   

 

1.2.3 Elastic crack tip stress fields 

 
Figure 1.14. Crack tip stress fields 
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Westergaard (1939) established the following equations for the elastic stress field in the 

vicinity of a crack tip: 

 

   

 

  

  

   

 

 

 

KI is the Mode-I stress-intensity factor (units N/m3/2) which defines the magnitude of the 

elastic stress field in the vicinity of the crack tip. Similar expressions exist, in terms of KII and 

KIII, for the Mode II and III loading situations. For mixed-mode loading, the stress fields can 

be added together directly. It can be seen that KI, KII and KIII characterize the entire stress 

field (and hence the strain fields) in the vicinity of the crack tip. It therefore seems reasonable 

to assume that, for Mode I loading for example, failure will occur when KI reaches a critical 

value Kc (KIc under plane strain conditions).  

 

The energy approach and the stress intensity approach are equivalent. Generally, for plane 

stress: 

 

    

 

and for plane strain:  
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Generally, for geometries with finite boundaries, the following expression is employed for 

stress intensity factor 

 

    

 

and similarly for KII and KIII, where Y is a function of the crack and component dimensions.  

 

Table 1.2: Typical Fracture Toughness Values 

Material   

Mild Steel 

Pressure Vessel Steel (HY130) 

Aluminium Alloys 

Cast Iron 

220 

1700 

100 to 600 

200 to 1000 

140 to 200 

170 

45 to 23 

20 to 6 

 

Solutions for Y can be found in the literature for a wide range of geometries and loadings, 

e.g. 

1. H Tada, P Paris and G Irwin, "The stress analysis of cracks handbook", DEL Research 

Corporation, Hellertown, Pennsylvania, 1973. 

2. G P Rooke and D J Cartwright, "Compendium of stress intensity factors", HMSO, 1975. 

3. Y Murakami (Editor), "Stress-intensity factors handbook", Pergamon Press, Oxford 1987, (2 

volumes). 

 

 

aYKI ps=

( )2/mMN ys ( )2/3/mMNKIc
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1.2.4 The effect of finite boundaries on expressions for stress intensity factors 

 

 
Figure 1.15. Stress intensity factors for finite bodies. 
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Example  

A large high carbon steel plate with a thumbnail crack, shown in Figure 1.16, for which  

 

 

 

has a fracture toughness of 72MN/m3/2 and σy = 1450 MPa. 

 

 
Figure 1.16: Thumbnail crack geometry. 

 

If 𝜎 = !
"
𝜎#, determine the critical initial crack size assuming linear elastic material. 

 

Solution 
At fracture, with  

 

𝜎 =
2
3𝜎# =

2
3 × 1450 = 966.67𝑀𝑃𝑎 

 

and 

 

max 1.2K as p=

a
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 𝐾$% = 72 &'

(
!
"#
 

 

Then (from ), 

 

72
𝑀𝑁

𝑚"
!)
= 1.2 × 966.67

𝑀𝑁
𝑚! ×4𝜋 × 𝑎*+,-	𝑚

.
!)  

 

Therefore,  

 

 𝑎*+,- =
.
/
7 0!
..!×344.40

8
!
= 1.226 × 105"𝑚 = 1.226𝑚𝑚 

 

If the material was mild steel, with 𝜎# = 210𝑀𝑃𝑎	𝑎𝑛𝑑	𝐾$% = 200 &'

(
!
"#
, then acrit = 451mm, 

i.e., it is much more likely to be detected during inspection! 

 

1.2.5 Fatigue crack growth 

It has been shown by Paris and co-workers (1961) that, for a wide range of conditions, there 

is a logarithmic linear relationship between crack growth rate and the stress intensity factor 

range during cyclic loading of cracked components. Although this proposition had difficulty 

being accepted initially, it has become the basis of the damage tolerant approach to fatigue 

life estimation and is widely used both in industry and in research. Essentially, it means that 

crack growth can be modelled and estimated based on knowledge of crack and component 

geometry, loading conditions and using experimentally-measured crack growth data to 

furnish material constants. This section describes the basics of this approach.  

 

max 1.2K as p=
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Figure 1.17: Variation of P (load) with t (time) 

 

Considering a load cycle as shown in Figure 1.17 which gives rise to a load range acting on 

a cracked body:  

 
  

 

The load range and crack geometry gives rises to a cyclic variation in stress intensity factor, 

which is given by:  

 

  

 

Even though the stress intensity factor may be less than the critical stress intensity factor for 

unstable crack growth, stable crack growth may occur if the stress intensity range, DK, is 

greater than an empirically-determined material property called the threshold stress intensity 

factor range, designated DKth. In addition, Paris showed that the subsequent crack growth 

can be represented by an empirical relationship as follows: 

 

  

 

where C and m are empirically-determined material constants. This relationship is known as 

the Paris equation. Fatigue crack growth data is often plotted as the logarithm of crack 

growth per load cycle, da/dN, and the logarithm of stress intensity factor range. There are 

minmax PPP -=D

minmax KKK -=D

mKC
dN
da )(  = D
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three stages, as shown in Figure 1.18. Below DKth., no observable crack growth occurs; 

region II shows an essentially linear relationship between log(da/dN) and log(DK), where m 

is the slope of the curve and C is the vertical axis intercept; in region III, rapid crack growth 

occurs and little life is involved. Region III is primarily controlled by Kc or KIc.  

 

  
Figure 1.18: Typical (schematic) variation of log (da/dN) with log (ΔK) 

 

The linear regime (Region II) is the region in which engineering components which fail by 

fatigue propagation occupy most of their life. Knowing the stress intensity factor expression 

for a given component and loading, the fatigue crack growth life of the component can be 

obtained by integrating the Paris Equation between the limits of initial crack size and final 

crack size.  

For most materials, the constant C is found to be dependent on R where R is a measure of 

the mean stress defined as: 

 

   

 

as shown below in Figure 1.19.  

 

max
min

K
KR =
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Figure 1.19: Effect of R on fatigue crack growth 

 
Some typical fracture mechanics values for a range of materials are shown in Table 1.3. 

 
Table 1.3: Typical values for DKth, m and DK 

From L.P. Pook, J. Strain Analysis, 1978, pp 114-135. 

(N.B. The DKth and DK (for da/dN = 10-6 mm/cycle) values depend on the R-value.) 

Material DKth (MN/m3/2) m DK (MN/m3/2) 

for da/dN = 10-6 mm/cycle 

Mild Steel 

316 stainless steel 

Aluminium 

Copper 

Brass 

Nickel 

4 to 7 

4 to 6 

1 to 2 

1 to 3 

2 to 4 

4 to 8 

3.3 

3.1 

2.9 

3.9 

4.0 

4.0 

6.2 

6.3 

2.9 

4.3 

4.3 to 66.3 

8.8 
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3 Thermal Stress and Strain 
 

Learning Summary 

1. Recall that thermal strains arise when a change in temperature is applied to an 

unconstrained body (knowledge); 

2. Recognise the cause of thermal strains and how ‘thermal stresses’ are caused by 

thermal strains (comprehension); 

3. Solve problems involving both mechanical and thermal loading (application). 

 

3.1 Introduction 

Stresses and strains usually arise when mechanical loads are applied to a system.  

However, they can also exist when no mechanical loading is present.  A typical example 

of this is when a temperature change occurs. 

 

Changes of temperature in a body cause expansion/contraction.  This phenomenon is 

quantified by the coefficient of thermal expansion, α.  Some typical values of thermal 

expansion coefficient for some common engineering materials are presented in Table 1.  

For isotropic materials, α is the same for all directions. 

 

Table 3.1 

Material 
Coefficient of 

Thermal Expansion, α, [°C-1] 

Concrete 10 x 10-6 

Steel 11 x 10-6 

Aluminium 23 x 10-6 

Nylon 144 x 10-6 

Rubber 162 x 10-6 
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Uniform temperature change throughout an unrestrained body produces uniform strain 

but no stress, i.e. there is free expansion/contraction. 

 

For a bar of length l, subjected to a temperature change ΔT, the change in length !lthernal 

due to the temperature change is given by: 

 

 

The thermal strain due to this length change can be determined as follows: 

 

 

Using the principle of superposition, which states that:  

 

thermal extensions can simply be added to elastic (mechanical) extensions to give the 

total extension by: 

 

 

or, for an axial member: 

 

 

However, if the body is restrained, or the temperature is not uniform, thermal stresses are 

produced in the body. 

  

 Q(,*-.#$/ = (RΔ5 (3.1) 

 T,*-.#$/ =
Q(,*-.#$/

( = (RΔ5
( = RΔ5 (3.2) 

 U5ℎ"	&)&+(	"WW"$&	)W	$)XY,%"7	()+7Z	+[[(,"7	&)	+	Y)7\ ]

=^U5ℎ"	"WW"$&Z	)W	&ℎ"	,%7,_,78+(()+7Z	+[[(,"7	Z["+#+&"(\ ] 

 

(3.3) 

 Q(,0,$/ = Q(-/$1,23 + Q(,*-.#$/ (3.4) 

 Q(,0,$/ =
`(
9a + (RΔ5 (3.5) 
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3.2 Resistive Heating of a Bar 

The bar shown in Figure 2.1 is subjected to a temperature rise of ΔT and restricted from 

expanding by constraints at each end. 

 

 
Figure 3.1 

 

Since the bar cannot extend, applying Equation (3.4): 

 

 

or alternatively: 

 

 

Cancelling l in Equation (3.7) and rearranging to find the force F gives: 

 

 

and the stress in the bar, : is: 

 

 

  

 Q(,0,$/ = Q(-/$1,23 + Q(,*-.#$/ = 0 (3.6) 

 Q(,0,$/ =
`(
9a + (RΔ5 = 0 (3.7) 

 ` = −9aRΔ5 (3.8) 

 : = `
9 = −aRΔ5 (3.9) 
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3.3 Compound Bar Assembly 

A compound bar assembly consisting of one aluminium and one steel bar of the same 

dimensions between two rigid end plates which are able two slide without friction is shown 

in Figure 3.2. 

 

If the whole assembly is subjected to a temperature change ΔT will the bars be in tension 

or compression? 

 

 
Figure 3.2 

 

If we consider this ‘intuitively’, because of compatibility the extension of the bars must be 

identical, i.e.: 

 

 

Referring to Table 3.1, we can see that αalu > αsteel therefore the aluminium bar will want to 

extend more than the steel bar but is constrained from doing so due to the rigid end blocks 

attached to the steel bar.  This means that the aluminium bar will be in compression.  

The reverse is true of the steel bar, it wants to extend less than the aluminium bar but the 

rigid end blocks attached the aluminium bar forces it to extend further, therefore the steel 
bar is in tension.  This is shown schematically in Figure 3.3, where the free expansion 

is compared to the constrained expansion. 

 

We can consider an analytical solution to the same problem; again Equation (3.10) applies 

meaning that (from Equation (7)): 

 

 Q(1,--/ = Q($/4 (3.10) 
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Figure 3.3 

 

The equilibrium condition can be obtained from the FBD in Figure 3.4 as follows: 

 

 

 
Figure 3.4 

 

Substituting for Fsteel from Equation (3.12) into Equation (3.11) gives: 

 

 

and therefore: 

 

 1̀,--/(
91,--/a1,--/

+ (R1,--/Δ5 = $̀/4(
9$/4a$/4

+ (R$/4Δ5 (3.11) 

 1̀,--/ = − $̀/4 (3.12) 

 (Δ5(R1,--/ − R$/4) = $̀/4( U
1

9$/4a$/4
+ 1
91,--/a1,--/

] (3.13) 
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As αsteel < αalu this means that :alu < 0 i.e. the aluminium bar is in compression. 

 

If we consider that: 

 

 

Then: 
 

 

As αsteel < αalu this means that :steel > 0 i.e. the steel bar is in tension. 

 

3.4 Generalised Hooke’s Law in 3D 

To incorporate thermal effects in 3D we add a thermal strain (RΔ5) term to the normal 

strains in Hooke’s Law: 

 

 

 :$/4 = $̀/4

9$/4
= Δ5(R1,--/ − R$/4)
b 1a$/4 +

9$/4
91,--/a1,--/c

 (3.14) 

 9$/4:$/4 = −91,--/:1,--/ (3.15) 

 :1,--/ = −9$/4:$/491,--/
= − 9$/4

91,--/
Δ5(R$/4 − R1,--/)
b 1
a1,--/ +

91,--/
9$/4a$/4c

 (3.16) 

 

 
(3.17) 

 

 
(3.18) 

 

 
(3.19) 

  (3.20) 

  (3.21) 

 
 (3.22) 

T
E zyxx D++-= assnse ])[(1

T
E zxyy D++-= assnse ])[(1

T
E yxzz D++-= assnse ])[(1

Gxyxy /tg =

Gyzyz /tg =

Gzxzx /tg =
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where ΔT is the temperature at a point relative to some datum.  There is no change to the 

shear stress-strain relationship as for linearly elastic, isotropic materials; a temperature 

change produces only normal strains. 

 

By introducing these thermal strains into the generalised Hooke’s Law we can obtain 

solutions to thermal stress problems which are often very important in, for example, power 

and chemical plant, aeroengines and internal combustion engines (e.g. pistons and 

cylinder walls) etc. 
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3.5 Case 1:  An initially straight uniform beam 

 

 
Figure 3.5 

 

 

- Determine the deformations and stresses (small deformations) 

 

The temperature variation is (assumed) purely a function of y, i.e. ΔT  = ΔT (y). 

 

The coefficient of thermal expansion = α.  Axial force P, and pure bending, about the z-z 

axis, M, are also applied. 

 

σz,σy,τxz, and τyz= 0 because the cross-sectional dimensions are small compared with the 

length. 

 

Also τyz = 0, because M does not vary with x, (a constant value) 

 

3.5.1 Compatibility 

Remote from the ends, strain varies linearly with y, 

C
dx
dMS ==
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Where  is the mean strain (at y = 0) and R is the radius of curvature. 

 

3.5.2 Stress-strain 

From the generalised Hooke’s Law Equation (3.17) (as σy and σz are 0) 

 

 

Substituting Equation (3.23) into Equation (3.24) and rearranging for σx gives: 

 

 

3.5.3 Axial Equilibrium 

 

Substituting Equation (3.25) into Equation (3.26) gives: 

 

 

Multiplying out to give individual terms: 

 

 

however, ∫ \79 = 0
5

 because y is measured from an axis passing through the centroid, 

so Equation (3.28) reduces to: 

e

 

 
(3.23) 

 

 
(3.24) 

 

 
(3.25) 

 
 

(3.26) 

 

 
(3.27) 

 

 
(3.28) 

R
y

x += ee

T
E
x

x D+= ase

÷
ø
ö

ç
è
æ D-+= T

R
yEx aes

ò=
A

xdAP s

dAT
R
yEP

A
ò ÷

ø
ö

ç
è
æ D-+= ae

òò D-+=
AA

TdAEdAy
R
EAEP ae



MMME2053 – Mechanics of Solids – Thermal Stress & Strain 35 

 

 

 

d 

3.5.4 Moment Equilibrium 

 

Substituting Equation (3.25) into Equation (3.30) gives 

 

 

Multiplying out to give individual terms: 

 

 

By definition ∫ \)79 = e
5

 and ∫ \79 = 0
5

 as before, therefore Equation (3.32) reduces 

to: 

 

 

  

 
 

(3.29) 

 
 

(3.30) 

 

 
(3.31) 

 

 
(3.32) 

 

 
(3.33) 
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3.5.5 Example 1 

A rectangular beam, width b and depth d has a temperature variation given by: 

 

 
Figure 3.6 

 

There is no restraint or applied loading (i.e. P = M = 0).  Obtain the stress distribution. 

 

Axial Force Equilibrium 
Recalling Equation (3.29) and inserting the temperature variation, axial force and 

considering a rectangular cross-section from the problem gives: 

 

 

Rearranging for the mean strain, T ̅gives: 

 

 

 
(3.34) 

 

 

(3.35) 
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And evaluating the integral: 

 

 

Gives: 

 

 

Moment Equilibrium 
With M = 0 we can obtain 1/R from the moment equilibrium (Equation (3.33)) but from 

symmetry we can see that (1/R) = 0. 

 

Stress Distribution 
Using Equation (3.25) and substituting in the expression for mean strain (Equation (3.38)), 

1/R and the temperature variation (Equation (3.34)) gives: 

 

 

Which reduces to: 

 

 

Evaluate Stress Distribution 
At y = 0, 

 

 

(3.36) 

 

 

(3.37) 

 

 
(3.38) 
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Which gives: 

 

 

At y = ±d/2, 

 

 

Reduces to: 

 

 

And then: 

 

 

We can also evaluate the point at which the stress, σx = 0, i.e. when 6(
!

7!
= '

&
, from Equation 

(3.40) which gives: 

 

 

Or y = ±0.287d 

 

 
(3.41) 

 

 
(3.42) 

 

 

(3.43) 
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This is the stress distribution away from the ends.  At the ends, σx = 0 and there is a 

gradual transition between the two. 

 

 
Figure 3.7 
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3.5.6 Example 2 

A rectangular beam (again b x d), but with: 

 

And the constrained so that ε = 0 and 1/R = 0. 

 

Determine the stresses and restraints. 

 

 
Figure 3.8 

 

 

Axial Force Equilibrium 
Recalling Equation (3.29) and substituting in for the temperature variation: 

 

Evaluate the integral: 

 

 

Also,  

P = 0 ε = 0       ∴

 

 
(3.47) 
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Moment Equilibrium 
Recalling Equation (3.31) and substituting in for the temperature variation and evaluating 

the integral: 

 

Also as 1/R = 0, this gives  

 

Stress Distribution 
Using Equation (3.25) with ε = 1/R = 0 

 

 

Substituting in for the temperature variation: 

 

 

 

At y = d/2, 

 

At y = -d/2 

 

 

 

(3.50) 

 

 
(3.51) 
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Evaluate Stress Distribution 
 

 
Figure 3.9 
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3.6 Case 2:  Thin cylinders 

Thin cylinders are in common use in power and chemical plant, e.g. pipes, pressure 

vessels, etc.  Often temperature variations are approximately linear through the thickness.  

Considering positions remote from the ends, flanges, etc. 

 

 
Figure 3.10 

 

It is convenient to consider the effect of the uniform temperature change and the 

temperature gradient separately.  If the cylinder is not restrained then the uniform 

temperature change causes overall dimensional changes, but no stress.  The stresses 

due to axial restraint are easily calculated. 

 

For the temperature gradient we have: 

 

 

where ΔTwall is the temperature difference across the wall.   

 

For a thin cylinder: 

 

 

 

 
(3.57) 

  (3.58) 

t
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Now using a cylindrical coordinate system and substituting in for σr: 

 

 

And 

 

 

Remote from the ends of the cylinder sections remain plane and circular.  Therefore, from 

compatibility considerations (with zero mean temperature change), the hoop and axial 

strains must both be zero.  Therefore: 

 

 

And 

 

 

Solving, gives 

 

 

 

 
(3.59) 

 

 
(3.60) 
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2 Yield Criteria 
 

Learning Summary 

1. Recognise the difference between ductile and brittle failure, as illustrated by the 

behaviour of bars subjected to uniaxial tension and torsion (knowledge); 

2. Describe the meaning of yield stress and proof stress, in uniaxial tension, for a 

material (comprehension); 

3. Describe the Tresca (maximum shear stress) yield criterion and the 2D and 3D 

diagrammatic representations of it (comprehension); 

4. Employ the Tresca yield criterion to determine whether yield has occurred in a 

structure (application); 

5. Describe the von Mises (maximum shear strain energy) yield criterion and the 2D 

and 3D diagrammatic representations of it (comprehension); 

6. Employ the von Mises yield criterion to determine whether yield has occurred in a 

structure (application). 

 

2.1 Introduction 

If a ductile material is subjected to uniaxial loading, as shown schematically in Figure 

2.1(a), beyond a certain point (the initial yield stress, !y0) the stress-strain behaviour 

ceases to be linear (i.e. stress is no longer proportional to strain) as shown in Figure 2.1(b) 

and the material is said to have ‘yielded’. Typical stress-strain curves for some materials 

are shown schematically in Figure 2.2.  For some materials (such as the aluminium alloy 

in Figure 2.2), the yield stress is not easily discernible, in these cases an offset or proof 

stress is defined, commonly at 0.1 or 0.2% strain.  This value is determined by drawing a 

line at the same gradient as the elastic portion of the stress-strain curve starting at at the 

value of strain at which the proof stress is to be determined, as shown in Figure 2.3.  

Loading past the yield stress, !y0, leads to permanent, unrecoverable deformation 

(permanent strain) of the material when the stress is removed, as shown by the quantity 

x in Figure 2.4. 

 



MMME2053 – Mechanics of Solids – Yield Criteria 13 

 

 

Materials that can be subjected to large strains before failure, such as mild steel and the 

aluminium alloy in Figure 2.2, are known as ductile materials, these are good materials 

from an engineering perspective as they absorb a lot of energy and exhibit large 

deformations before failure.  In contrast, grey cast iron is a brittle material and shows little 

or no yielding before failure. 

 

  
(a) (b) 

Figure 2.1 

 

 
Figure 2.2 
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Figure 2.3 

 

 
Figure 2.4 

 

The ductility of a material is usually expressed as a percentage elongation or percentage 

reduction in area at failure.  The percentage elongation is the failure strain of the sample 

expressed as a percent.  If Lf is the final length of the specimen at failure and L0 is the 

original length, the percent elengation is expressed as: 

 

�

�

0.2%

�0.2

E

�

�

x

 !"#$"%&	"()%*+&,)% = 	.! − ."."
(100%) (2.1) 
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The percentage reduction in area can be expressed as: 

 

 

where A0 and Af are the initial and final cross sectional areas respectively. 

 

2.2 Failure of Ductile Materials 

The failure of a tensile test specimen of a ductile material, such as mild steel, tends to be 

a ‘cup and cone’ mode of failure as shown in Figure 2.5(a) with a cone angle of 45°.  

Analysis of the Mohr’s circle for the loading condition, as shown in Figure 2.5(b) indicates 

that the 45° plane is the plane on which the maximum shear stress occurs. 

 
 

(a) (b) 

Figure 2.5 

 

If a circular cross section bar of ductile material (mild steel in this case) is subjected to 

torsional loading as shown in Figure 2.6(a), the torque-angle response is shown in Figure 

2.6(b). For T ≤ Ty, 5∝6 and the torque-angle behaviour is reversed on removal of the 

torque.  If the torque is continuously increased until failure occurs, the fracture plane is 

transverse to the axis of the specimen as shown in Figure 2.7.  A Mohr’s circle for the 

torsion loading case, also shown, indicates that failure occurs on the maximum shear 

stress plane. 
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Figure 2.6 

 

 
Figure 2.7 

 

Therefore, the results of both the tension and the torsion tests indicate that failure occurs 

on the planes that contain the maximum shear stresses.  This behaviour is similar to that 

of many “ductile” materials.   
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2.3 Failure of Brittle Materials 

The failure of a tensile test of a brittle material, such as grey cast iron, will tend to be a flat 

fracture surface perpendicular to the loading direction, as shown in Figure 2.8.  As 

previously mentioned there is little or no plastic deformation and the crack propagation 

across the fracture surface is very fast. 

 

 
Figure 2.8 

 

A torsion test on a brittle material will lead to a torque-angle response as shown in Figure 

2.9 and will lead to a 45° helical failure in the specimen as shown in Figure 2.10. 

 

 
Figure 2.9 
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Figure 2.10 

 

A Mohr’s circle for this loading condition, also shown in Figure 2.10, shows that the point 

on the Mohr’s circle associated with the maximum principal stress is 90o (ccw) from point 

1. Therefore, this represents a plane at 45o from plane 1 on the element. This maximum 

principal stress, :;, plane corresponds to the 45o helix angle of the fracture on the surface. 

This indicates that failure in this material has occurred on a plane on which the maximum 

principal stress exists. 

 

The tests and stress states used to come to the above conclusions for “ductile” and “brittle” 

failures are very simple and it would therefore be unwise to base failure criteria on this 

evidence alone. 

 

2.4 Yielding of Ductile Materials 

The topic of “Yield Criteria” is limited to the prediction of the initiation of yielding in “ductile” 

materials.  
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Two criteria that generally provide a good indication of yield that are widely used in elastic-

plastic analysis are the maximum shear stress (Tresca) criterion and the maximum shear 

strain energy (von Mises) criterion. 

 

2.5 The Maximum Shear Stress (Tresca) Yield Criterion 

If :1, :2 and :3 are the principal stresses in three-dimensions (:1	>	:2	>	:2) then as shown 

in the Mohr’s circle in Figure 2.11: 

 

 

 
Figure 2.11 

 

The Tresca yield criterion states that the material will yield when the maximum shear 

stress in the material exceeds a limiting value, this limiting value can be related to the 

uniaxial yield stress, :y when :1	=	:y, :2 :3 = 0  
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The Tresca (or >max) yield criterion therefore states that the material will yield if 

 

 

 

2.6 The Maximum Shear Strain Energy (von Mises) Yield Criterion 

The von Mises yield criterion states that the material will yield when the maximum shear 

strain energy (per unit volume) exceeds a limiting value.  If :1, :2	and :3 are the three 

principal stresses (:1	> :2	> :3) then: 

 

 

Again, the limiting value can be related to the uniaxial yield stress, :y, obtained from a 

uniaxial tensile test. Thus, at yield when :1	=	!y, :2 :3 = 0: 

 

 

The von Mises yield criterion can thus be expressed as follows: 

 

 

which can be reduced to the following, more common expression for the onset of yield, 

according to the von Mises yield criterion: 
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2.7 Two-dimensional Stress Systems (i.e. :3 = 0) 

The yield boundaries for both the Tresca and von Mises in a two-dimensional stress-state 

are shown in Figure 2.12.  For plotting purposes here, :1	and :2	can take on any values, 

i.e. :1	is not necessarily always greater than :2. 
 

 
Figure 2.12 

 

In general, the von Mises yield criterion is easier to handle analytically because it is 

continuous. This is particularly important for the calculation of incremental plastic strains, 

since the plastic strains are related to the normal to the yield surface and at the corners 

of the Tresca yield locus there is ambiguity about the directions of the normal, whereas 

there is no such ambiguity about the von Mises yield locus.  

 

2.8 Three-dimensional Stress Systems 

The Tresca and von Mises yield criterion are not altered if a constant stress component 

(:) is added to each stress component: 
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This implies that the addition of a “hydrostatic stress state”, i.e. :1	=	:2 = :3 = : does not 

change the shapes of the yield surfaces shown in the section on two-dimensional stress 

systems. 

 

The mean principal stress :* = '

&
(:' + :) + :&), which is known as the hydrostatic stress 

for a given stress state (:1,	:2,	:3), is the stress which causes volume change. Now, the 

independence of the yield criteria with respect to hydrostatic stress means that the three-

dimensional yield criteria are prismatic surfaces with the axes of the prisms in each case 

being the line	:1	=	:2 = :3. This is called the hydrostatic line in 3D stress space (Haigh-

Westergaard stress space) and it has direction cosines ( '
√&
, '
√&
, '
√&
). The yield boundaries 

can thus move any distance in the direction	:1	=	:2 = :3. The yield surfaces for both the 

von Mises and Tresca yield criteria therefore have a constant oblique section and hence 

a constant perpendicular cross-section, whose true shape can be seen in the view along 

the line	:1	=	:2 = :3. Any arbitrary stress ‘vector’ (:1,	:2,	:3), e.g. CDEEEEE⃗  andCGEEEEEE⃗ , (Figure 2.13), 

in the stress space can be decomposed into two components, one parallel to the 

hydrostatic line, e.g. C9EEEEE⃗  and CHEEEEE⃗ , and one perpendicular to the hydrostatic line, e.g. 9DEEEEE⃗  

and HGEEEEE⃗ . The oblique planes which are perpendicular to the hydrostatic line are called 

deviatoric planes and are given by equations of the form	 :1	+	:2 + :3	=	 const, each 

representing a different level of hydrostatic stress. The deviatoric plane with :1	+	:2 + :3	
=	0 is known as the p-plane. It can be shown that the component of (:1,	:2,	:3) parallel to 

the hydrostatic line is (:h,	:h,	:h), e.g. C9EEEEE⃗  and CHEEEEE⃗ , while the component parallel to the 

deviatoric planes is (:' − :* , :) − :* , :& − :*), 9DEEEEE⃗  and HGEEEEE⃗ . Only the latter component of 

stress is important in determining yield according to the von Mises and Tresca criteria.  

 

 N(:' + :) − (:) + :)O
) + N(:) + :) − (:& + :)O

)

+ N(:& + :) − (:' + :)O
)

= (:' − :))) +	(:) − :&)) + (:& − :')) = 2:() 

(2.11) 
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The representation of yield surfaces for a three-dimensional stress state and the 

decomposition of the stress into hydrostatic and deviatoric components are shown in 

Figure 2.13. 

 

 

 
Figure 2.13 

 

The view along the :1	=	:2 = :3 line of the von Mises and Tresca yield criteria is an 

isometric view showing the three axes included at 120o intervals. This is sometimes called 

a view on the P-plane, as shown in Figure 2.14 on which the Tresca yield surface is a 

hexagon and the von Mises yield surface is a circle.  Therefore, large principal stresses 

do not necessarily result in yield; it is the stress differences and the route to the final stress 
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state that govern whether yielding will occur. 

 

Figure 2.14 can be used, instead of the equations, to decide whether a certain stress state 

will be safe.  Simply plot on the diagram each of the three principal stresses parallel to 

each of the three axes and see whether the final point lies inside the appropriate yield 

surface. 

 

 
Figure 2.14 

 

NB:  

(i) The yield condition can be examined by either using the appropriate equation, i.e. 

 Tresca: :' − :& = :(  (:' > :) > :&) 

 von Mises: (:' − :))) + (:) − :&)) + (:& − :')) = 2:() 

or by plotting principal stresses on the p-plane. 

(ii) All three principal stresses are important. At free surfaces the normal stress is usually 

zero, but it may be important, particularly if the other two principal stresses are of the 

same sign. 
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Note: The last three figures are taken from Boresi, Schmidt and Sidebottom, “Advanced 

Mechanics of Materials”, 5th Ed, Wiley & Sons, 1993.  

 


