

MMME2053 Mechanics of Solids

Combined Loading Lecture 1

Combined Loading Introduction

In many engineering applications, structural members are subjected to a **combination of loads**

Drawing on the knowledge of the behaviour of individual loading cases on beams and shafts, for example, we will consider cases where more than one load is applied – combined loading

Combined Loading Examples

Boat Prop Shaft

Propeller subjects the shaft to:

A compressive axial force as it pushes the water backwards

and a torsional load as it turns through the water

Combined Loading Examples

Chimney

The chimney is subjected to:

A distributed axial load, due to gravity

and bending loads due to wind

Combined Loading Examples

Aeroengine Drive Shaft

Drive shaft is subjected to:

An axial force from pushing the air backwards

and a torsional load as it turns in the air

an additional bending load is created through deformation of the casing (particularly on take off)

Learning Objectives

- Know how to use Mohr's circle to analyse a general state of plane stress (*knowledge*);
- Recognise that the effect of combined loads on a component can be analysed by considering each load as initially having an independent effect (*comprehension*);
- Employ the principle of superposition to determine the combined effect of these loads (*application*).

Superposition and Combined Loading

Conceptual Examples

Principal of Superposition

 $\begin{bmatrix} The \ total \ effect \ of \ combined \\ loads \ applied \ to \ a \ body \end{bmatrix} = \sum \begin{bmatrix} The \ effects \ of \ the \ individual \\ loads \ applied \ separately \end{bmatrix}$

Combined Bending and Axial Loads

Combined Bending and Torsion

Arising from the UDL: Bending stress $\sigma_B = \frac{My}{I}$ where y = d/2Arising from the Torque: Torsional shear stress $\tau = \frac{Tr}{J}$ where r = d/2

Combined Pressure, Axial and Torsional Loading

Learning Objectives

- Know how to use Mohr's circle to analyse a general state of plane stress (*knowledge*);
- Recognise that the effect of combined loads on a component can be analysed by considering each load as initially having an independent effect (*comprehension*);
- Employ the principle of superposition to determine the combined effect of these loads (*application*).