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Learning Objectives

5. Understand how shape functions allow us to determine
displacement (and stresses and strains within an
element)

6. Understand how 2D approximations can be used to
simplify the modelling of 3D problems

7. Understand how (simple 2D) continuum elements allow
analysis of structures



2D Approximations

e Although problems are 3D, we can make some assumptions
and use a 2D approach for some problems

o Useful assumptions include the plane stress, plane strain
and axisymmetric assumptions



2D Approximations

Plane Stress Approximation

Consider a thin plate which is only
loaded in the in-plane directions

The normal stress o, must be zero
on the front and back faces

Because the plate is thin, then we
can assume that o, = 0 throughout

the thickness



2D Approximations

e Plane Stress Approximation

e The only non-zero components of
stress are o, 0, and r,, and we can
determine all of the strain
components, i.e. ¢, ¢,, &, and y,,,
from these stress components using
Hooke’s law (for elastic behaviour)

Ex = E (Ux _ VO'y) E, = F (O'x + O'y)
_ tay
Ex = E (O'y — VO'X) Yxy = T



2D Approximations

Plane Strain Approximation

Consider a very thick plate or long
member of regular cross-section,
again only loaded in the in-plane
directions

A plane ABCD, remote from the
ends experiences negligible strain
in the z-direction ¢, = O

We can determine the z-direction
stresses from the x and y-direction o, = V(0 + 0y)
normal stresses



2D Approximations

e Axisymmetric Approximation

e Used to represent cases with
geometry and loading that is
rotationally symmetric (r, z, 6
coordinates)

CrOSS-section

e Because of symmetry about the o ae=0
Z axis, the stresses are
independent of the 6 coordinate




2D Approximations

e Axisymmetric Approximation

e All derivatives with respect to 6
vanish and the displacement
component in the 6 direction,
the shear strains y,,and y,, and
the shear stresses r,,and z,, are
all zero

CrOSS-section




2D Approximations

e Plane Stress:
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2D Approximations

e Plane Stress:

Rollers (smooth)

- S
work piece has relative
motion towards tool

'
AWater Cooling




2D Approximations

e AXisymmetric:

3D geometry Modeled section

/section plane

__axis for symmetry | top plate

o-ring
groove
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Constant Strain Triangle (1)

e The simplest 2D element

e A 3-noded, linear triangular
element, 2 DOF per node

e Linear variation of
displacements within the

3-node

element: element

U (x,y) = C; + Cox + C3y
U, (x,y) = C4 + Csx + Cgy



Constant Strain Triangle (2)

e The constants C; — C, are related to the nodal coordinates
and the values of the displacements by:

fux1\ 1 X1 y1 0 O 0° fC1\
Uyt 0 0 0 1 x; y||&

: Uyx2 - 1 x y, 0 0 O < C3 >
Uy2( o 0 0 1 x5 y,])|Cq
Ux3 1 x3 y3 0 0 0]]Cs
\Uy3) 0 0 0 1 x3 y31\Cg/

w} = [ARC}



Constant Strain Triangle (3)

e The strain field is calculated by:

du
=gy = G

gy — W — -
aux auy element
yxy =a_y+ﬁ= C3 +CS

e All constant values — no variation
within the element — hence the
name



Constant Strain Triangle (4)

e Which in matrix form is:

Eyx i
Vxy I

o O O
O O =
_-O O
o O O
_-0 O
o9
"

e} = [XIKC}



Constant Strain Triangle (5)

e From before:

{C}=[A]""{uw

e So:

{e} = [X][A]"H{u} = [B]{u}



Constant Strain Triangle (6)

e If you work through the maths:

Y2 — Y3 0 Y3 — )1 0 Y1 — Y2 0

[B]zﬂ 0 X3_x2 O xl_x3 O xZ_x1<
X3 —Xz2 Y2—YV3 X1 —X3 Y3—)Y1 X2—X3 Y1—)Y2

e These are all known quantities as they are all a function of
the coordinates of the nodes




Constant Strain Triangle (7)

e To relate stresses to strains, we require a matrix of elastic
constants (Hooke’s law)

e For plane stress cases (as mentioned before) this is (in
matrix form):

! v 0
Ey E 1E O,
1%
Vxy EE Txy
. : 2(1+v)
L E




Constant Strain Triangle (8)

e If we rearrange this:
{o} = [D){e}

e Where D (for plane stress) is:

1l v 0

E v 1 0
[D]=1_v2 1—v

0 O 5



Constant Strain Triangle (9)

e Substituting for the strains

to} = [D][B]{u}

e Which allows us to determine the element stresses from the
element displacements



CST Example

e A steel cantilever beam of length 0.5m width 0.01m and
depth 0.025m, is subjected to a point load at the end of
5kN, determine the maximum stress in the beam and the
maximum deflection of the tip of the cantilever.

E = 200 GPa



CST Example

N, = 10 (1 through thickness)
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0y max = 1082 MPa U, min = -0.0378 m




CST Example

N, = 20 (2 through thickness)

0000000

000000

Ox max = 1176 MPa Uy, min = -0.0408 m




CST Example

N, = 1000 (5 through thickness)

Oy max = 2195 MPa U, min = -0.0703 m



Objectives

5. Understand how shape functions allow us to determine ,\,
displacement (and stresses and strains within an 4

element)

6. Understand how 2D approximations can be used to A/
simplify the modelling of 3D problems -

7. Understand how (simple 2D) continuum elements allow A/
analysis of structures ~



