

Mechanics of Solids MMME2053

Z

Finite Element Analysis Lecture 5

Learning Objectives

- 5. Understand how shape functions allow us to determine displacement (and stresses and strains within an element)
- 6. Understand how 2D approximations can be used to simplify the modelling of 3D problems
- 7. Understand how (simple 2D) continuum elements allow analysis of structures

- Although problems are 3D, we can make some assumptions and use a 2D approach for some problems
- Useful assumptions include the plane stress, plane strain and axisymmetric assumptions

• Plane Stress Approximation

- Consider a thin plate which is only loaded in the in-plane directions
- The normal stress σ_z must be zero on the front and back faces
- Because the plate is thin, then we can assume that $\sigma_z \approx 0$ throughout the thickness

• Plane Stress Approximation

The only non-zero components of stress are σ_x, σ_y and τ_{xy} and we can determine all of the strain components, i.e. ε_x, ε_y, ε_z and γ_{xy}, from these stress components using Hooke's law (for elastic behaviour)

$$\varepsilon_{x} = \frac{1}{E} (\sigma_{x} - \nu \sigma_{y})$$
$$\varepsilon_{x} = \frac{1}{E} (\sigma_{y} - \nu \sigma_{x})$$

$$\varepsilon_{z} = \frac{-\nu}{E} (\sigma_{x} + \sigma_{y})$$
$$\gamma_{xy} = \frac{\tau_{xy}}{2}$$

(т

• Plane Strain Approximation

- Consider a very thick plate or long member of regular cross-section, again only loaded in the in-plane directions
- A plane ABCD, remote from the ends experiences negligible strain in the z-direction $\varepsilon_z \approx 0$
- We can determine the z-direction stresses from the x and y-direction normal stresses

$$\sigma_z = \nu(\sigma_x + \sigma_y)$$

• Axisymmetric Approximation

- Used to represent cases with geometry and loading that is rotationally symmetric (r, z, θ coordinates)
- Because of symmetry about the z axis, the stresses are independent of the θ coordinate

• Axisymmetric Approximation

• All derivatives with respect to θ vanish and the displacement component in the θ direction, the shear strains $\gamma_{r\theta}$ and $\gamma_{\theta z}$ and the shear stresses $\tau_{r\theta}$ and $\tau_{\theta z}$ are all zero

• Plane Stress:

plate with hole

plate with fillet

• Plane Stress:

• Axisymmetric:

Objectives

- 5. Understand how shape functions allow us to determine displacement (and stresses and strains within an element)
- 6. Understand how 2D approximations can be used to simplify the modelling of 3D problems
- 7. Understand how (simple 2D) continuum elements allow analysis of structures

Constant Strain Triangle (1)

- The simplest 2D element
- A 3-noded, linear triangular element, 2 DOF per node
- Linear variation of displacements within the element:

 $u_x(x, y) = C_1 + C_2 x + C_3 y$ $u_y(x, y) = C_4 + C_5 x + C_6 y$

Constant Strain Triangle (2)

• The constants $C_1 - C_6$ are related to the nodal coordinates and the values of the displacements by:

$$\begin{cases} u_{x1} \\ u_{y1} \\ u_{x2} \\ u_{y2} \\ u_{y3} \\ u_{y3} \end{cases} = \begin{bmatrix} 1 & x_1 & y_1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & x_1 & y_1 \\ 1 & x_2 & y_2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & x_2 & y_2 \\ 1 & x_3 & y_3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & x_3 & y_3 \end{bmatrix} \begin{pmatrix} C_1 \\ C_2 \\ C_3 \\ C_4 \\ C_5 \\ C_6 \end{pmatrix}$$

 $\{u\} = [A]\{C\}$

Constant Strain Triangle (3)

• The strain field is calculated by:

 All constant values – no variation within the element – hence the name

Constant Strain Triangle (4)

• Which in matrix form is:

$$\begin{cases} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{xy} \end{cases} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \end{bmatrix} \begin{cases} C_{1} \\ C_{2} \\ C_{3} \\ C_{4} \\ C_{5} \\ C_{6} \end{cases}$$

 $\{\varepsilon\} = [X]\{C\}$

Constant Strain Triangle (5)

• From before:

 $\{C\} = [A]^{-1}\{u\}$

• So:

$$\{\varepsilon\} = [X][A]^{-1}\{u\} = [B]\{u\}$$

Constant Strain Triangle (6)

• If you work through the maths:

$$[B] = \frac{1}{2A} \begin{bmatrix} y_2 - y_3 & 0 & y_3 - y_1 & 0 & y_1 - y_2 & 0 \\ 0 & x_3 - x_2 & 0 & x_1 - x_3 & 0 & x_2 - x_1 \\ x_3 - x_2 & y_2 - y_3 & x_1 - x_3 & y_3 - y_1 & x_2 - x_3 & y_1 - y_2 \end{bmatrix} \begin{cases} C_1 \\ C_2 \\ C_3 \\ C_4 \\ C_5 \\ C_6 \end{cases}$$

 These are all known quantities as they are all a function of the coordinates of the nodes

Constant Strain Triangle (7)

- To relate stresses to strains, we require a matrix of elastic constants (Hooke's law)
- For plane stress cases (as mentioned before) this is (in matrix form):

$$\begin{cases} \varepsilon_{\chi} \\ \varepsilon_{y} \\ \gamma_{\chi y} \end{cases} = \begin{bmatrix} \frac{1}{E} & -\frac{\nu}{E} & 0 \\ -\frac{\nu}{E} & \frac{1}{E} & 0 \\ -\frac{\nu}{E} & \frac{1}{E} & 0 \\ 0 & 0 & \frac{2(1+\nu)}{E} \end{bmatrix} \begin{cases} \sigma_{\chi} \\ \sigma_{y} \\ \tau_{\chi y} \end{cases}$$

Constant Strain Triangle (8)

• If we rearrange this:

 $\{\sigma\} = [D]\{\varepsilon\}$

• Where D (for plane stress) is:

$$[D] = \frac{E}{1 - \nu^2} \begin{bmatrix} 1 & \nu & 0\\ \nu & 1 & 0\\ 0 & 0 & \frac{1 - \nu}{2} \end{bmatrix}$$

Constant Strain Triangle (9)

• Substituting for the strains

$$\{\sigma\} = [D][B]\{u\}$$

• Which allows us to determine the element stresses from the element displacements

- A steel cantilever beam of length 0.5m width 0.01m and depth 0.025m, is subjected to a point load at the end of 5kN, determine the maximum stress in the beam and the maximum deflection of the tip of the cantilever.
- *E* = 200 GPa

CST Example

$N_{e'} = 10$ (1 through thickness)

$$\sigma_{x max} = 1082 \text{ MPa}$$

 $u_{y_{min}} = -0.0378 \text{ m}$

CST Example

$N_{el} = 20$ (2 through thickness)

$$\sigma_{x_max} = 1176 \text{ MPa}$$

 $u_{y_{min}} = -0.0408 \text{ m}$

-0.005

-0.01

-0.015

-0.02

-0.025

-0.03

-0.035

-0.04

CST Example

$N_{e'}$ = 1000 (5 through thickness)

$$\sigma_{x_max} = 2195 \text{ MPa}$$

$$u_{y_{min}} = -0.0703 \text{ m}$$

Objectives

- Understand how shape functions allow us to determine displacement (and stresses and strains within an element)
- 6. Understand how 2D approximations can be used to simplify the modelling of 3D problems
- 7. Understand how (simple 2D) continuum elements allow analysis of structures

