

Mechanics of Solids

Thermal Stress and Strain Lecture 1

ISAMILIA M

Learning Objectives

- Recall that thermal strains arise when a change in temperature is applied to an unconstrained body (knowledge);
- 2. Recognise the cause of thermal strains and how 'thermal stresses' are caused by thermal strains (comprehension);
- 3. Solve problems involving both mechanical and thermal loading (application).

Changes of temperature in a body cause expansion and contraction

Thermal stresses and strains are important in many engineering situations

For example:

Power plant, aeroengines, IC engines and many others

Diesel Engine Piston

- Changes of temperature in a body cause expansion/contraction.
- This phenomenon is quantified by the coefficient of thermal expansion, α .
- Some typical values of thermal expansion coefficient for some common engineering materials are presented in Table 1.
- For isotropic materials, α is the same for all directions.

Material	Coefficient of Thermal Expansion, α, [°C ⁻¹]
Concrete	10 x 10 ⁻⁶
Steel	11 x 10 ⁻⁶
Aluminium	23 x 10 ⁻⁶
Nylon	144 x 10 ⁻⁶
Rubber	162 x 10 ⁻⁶

Notice that the values of steel and concrete are very similar – this is good news for reinforced concrete used in buildings

• For a bar of length l, subjected to a temperature change ΔT , the change in length $\delta l_{thermal}$ due to the temperature change is given by:

 $\delta l_{thermal} = l\alpha \Delta T$

• The thermal strain due to this length change can be determined as follows:

$$\varepsilon_{thermal} = \frac{\delta l_{thermal}}{l} = \frac{l\alpha\Delta T}{l} = \alpha\Delta T$$

• Using the principle of superposition, which states that:

 $\begin{bmatrix} The \ total \ effects \ of \ combined \\ loads \ applied \ to \ a \ body \end{bmatrix} = \sum \begin{bmatrix} The \ effects \ of \ the \ individual \\ loads \ applied \ separately \end{bmatrix}$

thermal extensions can simply be added to elastic (mechanical) extensions to give the total extension by:

$$\delta l_{total} = \delta l_{elastic} + \delta l_{thermal}$$

For our uniaxial bar:

$$\delta l_{total} = \frac{FL}{AE} + l\alpha \Delta T$$

http://www.youtube.com/watch?v=aT4tkbM38Fg

Learning Objectives

- Recall that thermal strains arise when a change in temperature is applied to an unconstrained body (knowledge);
- 2. Recognise the cause of thermal strains and how 'thermal stresses' are caused by thermal strains (comprehension);
- 3. Solve problems involving both mechanical and thermal loading (application).

Resistive Heating of a Bar

• The bar shown below is subjected to a temperature rise of ΔT and restricted from expanding by constraints at each end.

• Since the bar cannot extend:

$$\delta l_{total} = \delta l_{elastic} + \delta l_{thermal} = 0$$

Resistive Heating of a Bar

• Or:

$$\delta l_{total} = \frac{FL}{AE} + l\alpha \Delta T = 0$$

• Cancelling through *l* and rearranging for the reaction force, *F*, gives:

$$F = -AE\alpha\Delta T$$

• And we can determine the stress using:

$$\sigma = \frac{F}{A} = -E\alpha\Delta T$$