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Shear Stresses in Beams (1)

• The through-thickness shear force in a beam is the integral 
of the shear stresses over the cross-section

• We will derive an expression for the transverse (through 
thickness) shear stress at any position of a section in an 
arbitrary beam as a function of the shear force



Shear Stresses in Beams (2)

• Consider an element of beam length, δx, as shown below. 
The bending moment at x, section AC, is M and at x + δx, 
section BD, is M + δM.

• The direct bending stresses on AC are:
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Shear Stresses in Beams (3)

• And the direct bending stresses on BD are given by
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Shear Stresses in Beams (4)

• Thus, when the bending moment varies along the length of 
the beam on an element such as ABEF, there is a net axial 
force due to change in the bending stresses
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Shear Stresses in Beams (5)

• The force on the face EA is the integral of the bending 
stresses over the area, A
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Shear Stresses in Beams (6)

• The force on the face FB is the integral of the bending 
stresses over the area, A
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Shear Stresses in Beams (7)

• The net force to the right acting on the element ABEF is the 
difference in these

[1]
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Shear Stresses in Beams (8)

• In order to maintain equilibrium of ABEF, shear stresses 
must act on the plane EF, of average value τ.  These shear 
stresses are complementary to the transverse shear 
stresses

• The net force to the left due to these complementary shear 
stresses is: Net Force = 𝜏𝑧𝛿𝑥  
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Shear Stresses in Beams (9)

• Equilibrium of ABEF requires the net force due to bending 
to balance the net force due to the complementary shear
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Shear Stresses in Beams (10)

• In the limit,

• Where S is the shear force at the section

lim
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Shear Stresses in Beams (11)

• Which gives:

• This is the general integral expression for transverse shear 
stress at any position y through the thickness.
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Shear Stresses in Beams (12)

• Which can be written in discrete form as:

• where A is the area of the part of the cross-section outside 
the position at which τ is determined, and y is the distance 
of the centroid of this area from the neutral axis.

[3]𝜏 =
𝑆𝐴A𝑦
𝐼𝑧



Shear Stresses in Beams (13)

• May see it in some texts as:

• Where Q represents Ay but is generally more applicable for 
complex sections with changes is cross-sectional area 
through the depth of the beam.  We can calculate Q for 
each sub-area of the section and sum them together.
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Shear Stresses in Beams (14)
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• For a general beam cross section:
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