

Mechanics of Solids MMME2053

Shear Stresses Lecture 2

Shear Stresses in Beams (1)

- The through-thickness shear force in a beam is the integral of the shear stresses over the cross-section
- We will derive an expression for the transverse (through thickness) shear stress at any position of a section in an arbitrary beam as a function of the shear force

Shear Stresses in Beams (2)

• Consider an element of beam length, *δx*, as shown below. The bending moment at *x*, section AC, is *M* and at $x + \delta x$, section BD, is *M + δM*.

• The direct bending stresses on AC are: σ

 $\sigma_{AC} = \frac{1}{\sqrt{2\pi}}$ My $\overline{\mathcal{I}}$

A F

Shear Stresses in Beams (3)

• And the direct bending stresses on BD are given by

σ

A F

 $_{\shortparallel}$ $\sigma_{BD} =$ $\frac{\Gamma}{\gamma}$

 \overline{l}

E

Shear Stresses in Beams (4) y z

F

S

τ

E F

• Thus, when the bending moment varies along the length of the beam on an element such as ABEF, there is a net axial force due to change in the bending stresses B \bullet This

dA

Shear Stresses in Beams (5) E F

B

dA

• The force on the face EA is the integral of the bending stresses over the area, *A*

F

τ

A B B

$$
F_{EA} = \int_A \frac{M}{I} y dA
$$

Shear Stresses in Beams (6) E F

B

dA

• The force on the face FB is the integral of the bending stresses over the area, *A*

F

τ

A B B

$$
F_{FB} = \int_A \frac{(M + \delta M)}{I} y dA
$$

Shear Stresses in Beams (7) F E F

τ

A B B

• The net force to the right acting on the element ABEF is the difference in these

B

dA

$$
\text{Net Force} = \int_{A} \frac{\delta M}{I} y dA \qquad [1]
$$

Shear Stresses in Beams (8)

• In order to maintain equilibrium of ABEF, shear stresses must act on the plane EF, of average value *τ*. These shear stresses are complementary to the transverse shear stresses

• The net force to the left due to these complementary shear stresses is: $\qquad \qquad \text{Net Force} = \tau z \delta x$

Shear Stresses in Beams (9)

• Equilibrium of ABEF requires the net force due to bending to balance the net force due to the complementary shear

$$
\tau z \delta x + \int_A \frac{\delta M}{I} y dA = 0
$$

$$
\tau z \delta x = \frac{1}{Iz} \frac{\delta M}{\delta x} \int_A y dA
$$

Shear Stresses in Beams (10)

• In the limit,

$$
\frac{\lim}{\delta x \to 0} \frac{\delta M}{\delta x} = \frac{dM}{dx} = -S
$$

• Where S is the shear force at the section

Shear Stresses in Beams (11)

• Which gives:

$$
\tau = \frac{S}{IZ} \int_A y dA \qquad [2]
$$

• This is the general integral expression for transverse shear stress at any position *y* through the thickness.

Shear Stresses in Beams (12)

• Which can be written in discrete form as:

$$
\tau = \frac{SA\overline{y}}{Iz} \qquad [3]
$$

• where *A* is the area of the part of the cross-section outside the position at which τ is determined, and \bar{y} is the distance of the centroid of this area from the neutral axis.

Shear Stresses in Beams (13)

• May see it in some texts as:

$$
\tau = \frac{SQ}{IZ}
$$

• Where Q represents $A\overline{y}$ but is generally more applicable for complex sections with changes is cross-sectional area through the depth of the beam. We can calculate *Q* for each sub-area of the section and sum them together.

Shear Stresses in Beams (14)

• For a general beam cross section:

y z A NA **+** \overline{y} $\tau =$ $SA\bar{y}$ IZ