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Learning Objectives

1. Appreciate that in addition to longitudinal bending 
stresses, beams also carry transverse shear stresses 
arising from the vertical shear loads acting within the 
beam (knowledge)

2. Be able to derive a general formula, in both integral and 
discrete form, for evaluating the shear stress distribution 
through a cross-section (comprehension);

3. Determine the shear stress distribution through the 
thickness in a rectangular, circular and I-section beam 
(application);



Learning Objectives

4. Understand that in an I-section, in addition to the 
transverse vertical shear stresses in the flange and web, 
more dominant horizontal shear stresses also occur in the 
flange (comprehension);

5. Recognise that the resultant of the shear stresses always 
act through one point, known as the ‘shear centre’ 
(comprehension);

6. Calculate the position of the shear centre (application);
7. Understand that if the applied loads do not act through the 

shear centre, then there is a resultant torsional load, which 
can result in twisting of the section if the torsional rigidity 
of the section is low e.g. thin walled sections 
(comprehension).



Important Points

• The general formulae for shear stresses in beams in both 
integral and discrete forms are:

Where S is the shear force on the section, I is the second 
moment of area, y is the position from the N.A. at which you 
wish to determine the shear stress, z is the thickness of the 
section at that location, A is the area outside that location, 
and y is the distance to the centroid of that area.
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Shear Stress Distribution
in a Circular Beam (1)

• To calculate the transverse shear stress distribution in a 
circular cross section:

• We use the integral form of the shear equation ([2] in the 
handout)
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Shear Stress Distribution
in a Circular Beam (2)

• Because of the circular shape, it is 
convenient to change the variables y
and z in this equation to polar 
variables, R and θ.

• So,
y1 = R sinθ1

dy1 = R cosθ1dθ1
z1 = 2R cosθ1
z = 2R cosθ
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Shear Stress Distribution
in a Circular Beam (3)

• The second moment of area, I
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Shear Stress Distribution
in a Circular Beam (4)

• Substituting into the shear stress equation gives:
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Shear Stress Distribution
in a Circular Beam (5)
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Shear Stress Distribution
in a Circular Beam (6)

• As:
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Shear Stress Distribution
in a Circular Beam (7)

• Again a parabolic distribution

• With a maximum value of τ at the N.A.(y = 0)
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Shear Stress Distribution
in a Circular Beam (8)

• In this case, τ must vary across
the width of the section.

• At the free surface the shear
stress must be zero. Therefore,
the complementary shear on the
cross-section, normal to the
boundary, is also zero. Thus,
shear must be tangential to the
boundary as drawn.


