

Mechanics of Solids

Thermal Stress and Strain Worked Example 2

A rectangular beam, of width b and depth d, has a temperature variation given by:

There is no restraint or applied loading, so P = M = 0. Obtain the stress distribution

Axial Force Equilibrium

Equation (5)
$$P = E\bar{\varepsilon}A - E\alpha \int_A \Delta T dA$$

so,
$$0 = E\bar{\varepsilon}bd - E\alpha \int_{-\frac{d}{2}}^{\frac{d}{2}} \Delta T_{max} \left(1 - \frac{4y^2}{d^2}\right)bdy$$

Axial Force Equilibrium
Rearranging,
$$\bar{\varepsilon} = \frac{\alpha}{d} \Delta T_{max} \int_{-\frac{d}{2}}^{\frac{d}{2}} \left(1 - \frac{4y^2}{d^2}\right) dy$$

$$\bar{\varepsilon} = \frac{\alpha}{d} \Delta T_{max} \left[y - \frac{4y^3}{3d^2} \right]_{-\frac{d}{2}}^{\frac{d}{2}}$$

$$\bar{\varepsilon} = \frac{2}{3} \alpha \Delta T_{max}$$

Moment Equilibrium

Equation (7) could be used to determine 1/R using M = 0

$$M = \frac{EI}{R} - E\alpha \int_{A} \Delta T y dA$$

But from symmetry, we can see that 1/R = 0 (radius is infinite)

Stress Distribution

Equation (3)
$$\sigma_{\chi} = E\left(\bar{\varepsilon} + \frac{y}{R} - \alpha\Delta T\right)$$

Substituting in for $\, \overline{\!\mathcal{E}} \,$, 1/R and the given temperature variation gives

$$\sigma_{x} = E\left(\frac{2}{3}\alpha\Delta T_{max} + 0 - \alpha\Delta T_{max}\left(1 - \frac{4y^{2}}{d^{2}}\right)\right)$$

$$\sigma_x = E\alpha\Delta T_{max} \left(\frac{4y^2}{d^2} - \frac{1}{3}\right)$$

Evaluate Stress Distribution

At
$$y = 0$$
 $\sigma_x = \frac{-E\alpha\Delta T_{max}}{3}$

At
$$y = \pm d/2$$
 $\sigma_{\chi} = \frac{2E\alpha\Delta T_{max}}{3}$

Evaluate Stress Distribution

$$\sigma_x = 0 \text{ when } \frac{4y^2}{d^2} = \frac{1}{3}$$
 (from $\sigma_x = E\alpha\Delta T_{max}\left(\frac{4y^2}{d^2} - \frac{1}{3}\right)$)
i.e. $y = \sqrt{\frac{1}{12}d^2}$

or $y = \pm 0.287d$

Evaluate Stress Distribution

Taking the points we know and plotting a transition between them gives:

