
Mechanics of Solids

Thermal Stress and Strain
Worked Example 2
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A rectangular beam, of width b and depth d, has a temperature variation given by:

There is no restraint or applied loading, so P = M = 0.  Obtain the stress distribution
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Axial Force Equilibrium

Equation (5)

So,
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Rearranging,

Axial Force Equilibrium
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Moment Equilibrium

Equation (7) could be used to determine 1/R using M = 0

But from symmetry, we can see that 1/R = 0 (radius is infinite)
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Stress Distribution

Equation (3)

Substituting in for     , 1/R and the given temperature variation gives
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Evaluate Stress Distribution

At y = 0 𝜎𝑥 =
−𝐸𝛼Δ𝑇𝑚𝑎𝑥
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σx = 0 when (from                                                    )

i.e. 

or y = ±0.287d

Evaluate Stress Distribution
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Evaluate Stress Distribution
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Taking the points we know and 
plotting a transition between 
them gives:
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