
Computer Engineering and
Mechatronics MMME3085

Lecture 10: Multitasking, Interrupts,
FPGAs as an alternative to computing

1

Abdelkhalick Mohammad, AMB, B37

A typical mechatronic system
• This is where Lecture 10 fits in

2

Computer
or micro-
processor

Program
e.g. in C

Buses
in
computer

Digital
signal

Analogue
signal

Digital
signal

Digital
signal

Analogue
signal

Digital
signal

Digital
output
inter-
face

DAC Electronic
hardware

Actuators

Mechanical
system

Digital
input
inter-
face

Sensors

ADC
Electronic
hardware

1,4,10

 2,3,10

 5,6

7,8,9

Overview of lecture

• Introduction to real-time issues

• Multitasking

• Interrupts:

• The Arduino way

• The low-level, AVR register way

• Revisiting examples you’ve already seen

• FPGAs – what are they

• Lookup tables

• Applications of FPGAs
3

Multitasking

Introduction

Multitasking issues

• We tend to take it for granted that
computers can do more than one thing at
once:

– We can run multiple applications under Windows

– “Mainframe computers” (the 1960s-80s
equivalent of servers, along with the main Unix
machines at the University etc.) have large
numbers of simultaneous users

– A single microprocessor may be performing
several different control functions at once

But, the question is does the computer handle these
tasks in real time simultaneously?!

5

Multitasking issues

• In fact a single microprocessor can only
perform one job at a time

• Multitasking involves each task sharing the
computing resources (microprocessors or
cores) available and taking turns according
to some scheduling algorithm

6

Multitasking issues

• Even if many tasks appear to be happening
at once (Windows clock, playing music,
capturing keystrokes in Word etc.), on a
single-core machine, only one task will be
happening at once

• Even on a multicore machine, only (bits of)
say two or four tasks will take place
simultaneously

7

Multitasking on the Arduino

• Most Arduinos only have a single core, so
we are limited to getting our one core to
multi-task

• It can’t really do that, of course – we have
to have some way of scheduling different
aspects of our tasks are executed at the
right time without delaying each other

• We will consider:

• Simple scheduling approaches

• Interrupts (to give urgent tasks priority)
8

Multitasking

Simple scheduling approaches

Cooperative multi-tasking

• One timed loop for each task

• You already know how to do this! Basis of:

• One of the first tasks you did (blinking
multiple LEDs independently)

• Print loop and control loop running at
different intervals (1000 ms and 20 ms)

• Non-pre-emptive: there is no attempt to
stop each iteration of each task running, it
is executed and lets another task take over

• “Cooperative” as tasks must cooperate –
each task must make way for the others!

10

Cooperative multi-tasking – a
simple implementation

11

Pre-emptive multi-tasking

• Each task is allowed a certain amount of
machine time to run

• Then it is put on hold, and the next task
runs for a time

• Then the next task…until we get back to the
first task

• It is pre-emptive because a task gets
stopped to allow next one to continue

• Need way of putting task on hold: multiple
stacks to store the state of each task 12

Pre-emptive multi-tasking e.g.
round-robin scheduling

• Can be done on AVR microprocessors but
much harder to do

• Won’t look at this in any detail

• See:

https://www.hackster.io/AkashKollipara/pree
mptive-multitasking-scheduler-for-avr-e985fd

But what if we want to change our priorities to
deal with something happening externally?

13

https://www.hackster.io/AkashKollipara/preemptive-multitasking-scheduler-for-avr-e985fd
https://www.hackster.io/AkashKollipara/preemptive-multitasking-scheduler-for-avr-e985fd

Responding to
external events

Responding to external events

• There are two basic ways of making your
computer respond to external things
happening:

• Polling:

• Repeatedly checking a digital input pin to
see whether it has changed state etc.

• This takes up computing time and may
miss an event taking place.

• Excellent example is encoder state
machine program: missed pulses when
printing to serial port

15

Responding to external events

• Interrupt: a feature of a computer which
enables an internal or external signal or
event to:

• interrupt execution of the a program

• cause the execution of special code not
directly called by the main program

• Typical causes of interrupts:

• Hardware: timer event e.g. overflow,

• External event e.g. pin change, key
stroke, mouse movement

• Software: arithmetic overflow, zero divide
16

Interrupt

Introduction

What is an interrupt?

• Formal definition (from A Dictionary of
Computer Science, Oxford University Press,
7th Ed, 2016)

“A signal to a processor indicating that an
asynchronous event has occurred. The
current sequence of events is temporarily
suspended (interrupted) and a sequence
appropriate to the interruption is started in
its place”

18

Interrupt terminologies

• Interrupt handler or interrupt service
routine

19

An interrupt service routine (ISR) is a
software routine that hardware invokes in
response to an interrupt.

Interrupt terminologies

• Interrupt vector: misleading name, it an
entry in a list or table of addresses of
interrupt service routines

20

(extract from
Atmega 2560 data
sheet)

Interrupts on
the Arduino

Interrupts on the Arduino

• Not surprisingly, we’ll consider this from two
viewpoints:

• Within the Arduino language (limited
functionality available)

• Via lower-level programming of the
AVR Atmega microcontroller, specifically
via registers:

• Far more versatile (more flexibility)

• Much greater functionality

• But a bit harder! 22

Interrupts on
the Arduino

1. Arduino language

Arduino interrupt functionality

• Arduino language itself only supports one
kind of interrupt, the “external interrupt”:

• Limited range of pins (on Mega it’s pins
2-3 and 18-21, on Uno only pins 2 & 3)

• Separate interrupt vector for each pin

• Interrupt is triggered when interrupt pin:

• Is low (option given name LOW)

• Changes state (CHANGE)

• Goes from low to high (RISING)

• Goes from high to low (FALLING) 24

Arduino interrupt functionality

• Link a function to an external interrupt
event (so effectively turning it into an ISR):

attachInterrupt(digitalPinToInterrupt(pin), ISR, mode)

 where:

• ISR is name of function to call (must take
no parameters and return nothing)

• mode is LOW, CHANGE, RISING or FALLING

25

Example

• The example we used was to call the
function updateEncoderStateMachine when
pins 2 or 3 (named channelA and
channelB) changed state:

• This effectively turned
updateEncoderStateMachine into an
interrupt service routine without doing any
register-level programming

26

Arduino interrupt functionality

Pin change interrupts:

• Other pins can be used to generate
interrupts using (for example) the
pinChangeInterrupt library

• Broadly similar functionality to native
Arduino functions for external interrupts

• but only for RISING, FALLING or CHANGE:

attachPCINT(digitalPinToPCINT(pin),ISR, mode); 27

Arduino interrupt functionality

Timer interrupts

• Powerful functionality can be obtained using
interrupts triggered by timer events such as:

• Counter overflow (when counter exceeds
maximum value and rolls over to 0)

• Counter compare match (when counter
value matches a predetermined value)

• Libraries available: TimerOne, TimerThree

• Can generate frequencies, non-standard PWM
signals, call ISRs at specified intervals etc. 28

Interrupts on
the Arduino

2. The AVR way

Interrupts – the AVR way

• It will be no surprise that we can get the full
power of interrupts on AVR chips by:

• Reading the datasheet carefully!

• Configuring individual control registers
to set up interrupts

• Making use of the interrupt vector for
each kind of interrupt in order to call the
interrupt service routine (ISR)

• Best illustrated via examples from your
experience – seen previously in labs, but
probably not understood!

30

Interrupts on
the Arduino

2. The AVR way: Example 1 - Encoder state machine

Examples of AVR interrupts:
Encoder program – the AVR way

• Alternative implementation of the interrupt-
driven encoder state machine function: ISR
to update state m/c when pin 2 or 3 changes

• “External interrupts”, e.g. pins 2&3 on Mega:

• Pin 2 linked to interrupt vector INT4_vect

• Pin 3 linked to interrupt vector INT5_vect

 (on Uno it’s INT0_vect and INT1_vect)

32

Examples of AVR interrupts:
Encoder program – the AVR way

• Alternative implementation of the interrupt-
driven encoder state machine function: ISR
to update state m/c when pin 2 or 3 changes

• “External interrupts”, e.g. pins 2&3 on Mega:

• Pin 2 linked to interrupt vector INT4_vect

• Pin 3 linked to interrupt vector INT5_vect

 (on Uno it’s INT0_vect and INT1_vect)

1. Need to configure interrupts using registers

2. Then we just define our routine e.g. as

 void ISR(INT4_vect) 33

1. Configure interrupts via registers

• Configure the interrupts using External Interrupt
Control Registers EICRA and EICRB (INT7:4)

34

2. Define our routine

• Then we can (re)enable external interrupts by
setting bits 4 and 5 in register EIMSK

• Then we just define our interrupt service
routine to update state machine e.g. as

 void ISR(INT4_vect)

• Also have code to link same ISR to INT5_vect
35

Encoder program – the AVR way

• So here is our code to configure interrupts:

• And here is the start of our ISR, otherwise
same as updateEncoderStateMachine():

36

Understand underlying
concept, don’t learn details

Interrupts on
the Arduino

2. The AVR way: Example 2 - Counting overflows

Timer/counter interrupts the AVR
way: counting overflows
• In Lab 1/consolidation session 3 we tried

using Timer 5 as a counter

• Counted how many pulses we got on pin 47,
tried seeing if we could use it with encoder

• No good because only counts in one direction,
not an up/down quadrature counter!

• But even worse, it only counts up to 65535
then rolls over back to zero (“overflows”), so
how did we overcome this?

• Answer: used an ISR to count the overflows!

• Overflow triggers vector TIMER5_OVF_vect
38

This ISR is called
each time
timer/counter 5
overflows, increments
no. of overflows in
bigLaps

Interrupts on
the Arduino

2. The AVR way: Example 3 - Stepper program

Remember this from lecture 3?

• Slightly modified from L3, simplified timer…

 (understand concept, don’t learn)

41

Timer/counter 1
Clock or
 source

Select from:

External pulse source
 or
System clock (16 MHz)
prescaled by 1, 8, 64,
256, or 1024
(i.e. 16, 2 MHz, or
250, 62.5 or 15.625
kHz)

Counter register TCNT1

Output compare
register A OCR1A

=?

Output A e.g. PWM:
not used here

Output compare
register B OCR1B

=?

Output B
not used
here

Calls to special
functions (ISRs)

Configuration registers:
TCCR1A, TCCR1B, COM1A0 etc.

• Value (TCNT1) in the counter register
increases until it reaches the value in output
compare register (here OCR1A)

• Causes interrupt, calls ISR, resets TCNT1 to 0

• Big OCR1A=low freq, small OCR1A=hi freq

42
ISR called & TCNT1
reset
on each “match”

Value in main
counter

register TCNT1

Timing diagram from Atmega 2560 datasheet

ISR called at
low freq

ISR called at
high freq

Remember this from lecture 3?

Time per step: Implementation 2

• Alternative approach implemented in Lab 2:

• A hardware timer configured in CTC mode
with interval p, triggers ISR every p ticks:

(don’t learn details but understand that timer
triggers interrupt calling the ISR every period p)

Time per step: Implementation 2

• This hardware timer triggers an interrupt
which is serviced by an ISR, which makes
step & recalculates time p per step

p is re-calculated here for next step

Actually make step pulse

New interval p written to timer

Important message regarding ISRs:

• When an ISR is running, the main program
isn’t

• So everything else stops while the interrupt
is serviced

• The moral is: keep the code in your ISR
very quick and simple so it does not
greatly interfere with program flow

• Otherwise your program may “lock up”, just
as your interrupt-driven encoder program did
when servicing too many interrupts

45

Field
Programmable

Gate Arrays
FPGA

Introduction

What is an FPGA?

47

This is how the conventional microprocessor works!

Revised from a video https://www.youtube.com/watch?v=iHg0mmIg0UU

What is an FPGA?

48

This is how the FPGA does the same job!

The added is a real hardware !!

49

What is an FPGA?

How the adder looks like inside?!

The adder consists of logic gates (as we learned previously) !!

50

What is an FPGA?

Basic logic gates

51

What is an FPGA?

Convert
logic gates
into LUT

We will give an example later to show this process !

52

What is an FPGA?

Now the adder can be converted into LUTs!

53

What is an FPGA?

We need to connect this LUTs together !!

54

What is an FPGA?

This can be done through routing fabric between the LUTs

55

What is an FPGA?

Now by programming the LUTs and re-wiring them, we
can do any combinations of arithmetic or complex

process!!

56

Extract from National Instruments
training materials

What is an FPGA?

Field
Programmable

Gate Arrays
FPGA

LUT

How does it work?

• In general, each logic gate is emulated
using a look-up table

• Instead of using hard-wired logic, it codes
up truth table as the output for each
combination of inputs treated as a binary
number

• Let’s take a simple example…

58

Example of logic gate using FPGA

Input 1 Input 2 Output

0 0 0

0 1 0

1 0 0

1 1 1

Input 1

Input 2

Output

• Nothing new so far…
59

Example of logic gate using FPGA

• Treat combination of inputs as binary no.

• Store each of these binary numbers and its
associated output as a table

Input
1

Input
2

Row no. in table (LUT
index)

Output

Binary Decimal

0 0 00 0 0

0 1 01 1 0

1 0 10 2 0

1 1 11 3 1

Example of logic gate using FPGA

• Now have generic “lookup table” unit with:

– several inputs (6 on Virtex 5 FPGAs), one output

– data storage for the lookup table itself

– logic to give output for given row of table

Input 1

Input 2 Output

Not used

Index Output

0 (00) 0

1 (01) 0

2 (10) 0

3 (11) 1

(another 60 rows unused)

Input 1

Input 2

Input 3

Input 4

Input 5

Example of a lookup table
implementing a logic circuit

Output

Input 1
Input 2

Not used

Input 3
Input 4
Input 5

Index Output

0 (00000) 0

1 (00001) 1

2 (00010) 0

3 (00011) 1

4 (00100) 0

etc. etc. - another 27
rows; 32 unused

6-input LUT
62

Field
Programmable

Gate Arrays
FPGA

LUT implementation

www.allaboutcircuits.com

How can we implement LUT?!

Index Output

0 (00) 0

1 (01) 0

2 (10) 0

3 (11) 1

(another 60 rows unused)

• LUTs comprise of 1-bit memory cells (programmable
to hold either ‘0’ or ‘1’) and a set of multiplexers.

• One value among these SRAM bits will be available
at the LUT’s output depending on the value(s) fed to
the control line(s) of the multiplexer(s).

64

65

How can we implement LUT?!

Example of 4-inputs LUT

66

Can I use 3-iputs LUTs as
4-inpts LUT?!

67

Can I use 4-iputs LUT as 3-
inpts LUT?!

Field
Programmable

Gate Arrays
FPGA

FPGAs in practice

How are FPGAs programmed ?

• Conventional way to program them is via
dedicated hardware development languages
e.g. VHDL – not easy to learn!

• Can alternatively use special versions of
other languages e.g. C, LabVIEW, in similar
manner to programming a microprocessor

• Code is turned into “bitstream” of
commands which configure the hardware
(analogous to machine code on -processor)

69

NI FPGA Compact RIO

70

FPGAs in practice

71

A

B

A

B

A

B

Forwards (counting up)

Backwards(counting down)

Why bother with FPGAs?

• Better performance in some applications
than microprocessors – hardware tends to
be faster than software

• Much cheaper for moderate sized runs than
application-specific ICs (ASICs)

• Truly parallel, no risk of time-critical tasks
pre-empting one another

• Field-upgradable – no hardware redesign
needed in case of modifications 72

An FPGA disguised as an Arduino!

• Example: Alorium XLR8 board is an Arduino
Uno compatible board which has an FPGA
instead of an Atmega microcontroller. It can
be programmed using the Arduino IDE!

73

https://www.aloriumtech.com/xlr8/

https://www.aloriumtech.com/xlr8/

Can you think of something we
might have wanted to use an
FPGA for?

• Something that needed to be done quicker
than we could do it in software…

• We used dedicated hardware for it, but we
could have done the same job via an FPGA

• What was it?

74

Summary

• Examined some issues of timing and
scheduling of tasks including multitasking
and multithreading

• Introduced polling for events

• Introduced interrupts and explored some
applications you have previously seen

• Introduced FPGAs and explored how they
work including the use of lookup tables

• Advantages and limitations of FPGAs
75

76

Can you please complete the module SEM survey?!

	Slide 1: Computer Engineering and Mechatronics MMME3085
	Slide 2: A typical mechatronic system
	Slide 3: Overview of lecture
	Slide 4: Multitasking
	Slide 5: Multitasking issues
	Slide 6: Multitasking issues
	Slide 7: Multitasking issues
	Slide 8: Multitasking on the Arduino
	Slide 9: Multitasking
	Slide 10: Cooperative multi-tasking
	Slide 11: Cooperative multi-tasking – a simple implementation
	Slide 12: Pre-emptive multi-tasking
	Slide 13: Pre-emptive multi-tasking e.g. round-robin scheduling
	Slide 14: Responding to external events
	Slide 15: Responding to external events
	Slide 16: Responding to external events
	Slide 17: Interrupt
	Slide 18: What is an interrupt?
	Slide 19: Interrupt terminologies
	Slide 20: Interrupt terminologies
	Slide 21: Interrupts on the Arduino
	Slide 22: Interrupts on the Arduino
	Slide 23: Interrupts on the Arduino
	Slide 24: Arduino interrupt functionality
	Slide 25: Arduino interrupt functionality
	Slide 26: Example
	Slide 27: Arduino interrupt functionality
	Slide 28: Arduino interrupt functionality
	Slide 29: Interrupts on the Arduino
	Slide 30: Interrupts – the AVR way
	Slide 31: Interrupts on the Arduino
	Slide 32: Examples of AVR interrupts: Encoder program – the AVR way
	Slide 33: Examples of AVR interrupts: Encoder program – the AVR way
	Slide 34: 1. Configure interrupts via registers
	Slide 35: 2. Define our routine
	Slide 36: Encoder program – the AVR way
	Slide 37: Interrupts on the Arduino
	Slide 38: Timer/counter interrupts the AVR way: counting overflows
	Slide 39
	Slide 40: Interrupts on the Arduino
	Slide 41: Remember this from lecture 3?
	Slide 42: Remember this from lecture 3?
	Slide 43: Time per step: Implementation 2
	Slide 44: Time per step: Implementation 2
	Slide 45: Important message regarding ISRs:
	Slide 46: Field Programmable Gate Arrays FPGA
	Slide 47: What is an FPGA?
	Slide 48: What is an FPGA?
	Slide 49: What is an FPGA?
	Slide 50: What is an FPGA?
	Slide 51: What is an FPGA?
	Slide 52: What is an FPGA?
	Slide 53: What is an FPGA?
	Slide 54: What is an FPGA?
	Slide 55: What is an FPGA?
	Slide 56
	Slide 57: Field Programmable Gate Arrays FPGA
	Slide 58: How does it work?
	Slide 59: Example of logic gate using FPGA
	Slide 60: Example of logic gate using FPGA
	Slide 61: Example of logic gate using FPGA
	Slide 62: Example of a lookup table implementing a logic circuit
	Slide 63: Field Programmable Gate Arrays FPGA
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68: Field Programmable Gate Arrays FPGA
	Slide 69: How are FPGAs programmed ?
	Slide 70
	Slide 71: FPGAs in practice
	Slide 72: Why bother with FPGAs?
	Slide 73: An FPGA disguised as an Arduino!
	Slide 74: Can you think of something we might have wanted to use an FPGA for?
	Slide 75: Summary
	Slide 76

