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2.1  Introduction

• The FE formulation is extended to cover two-dimensional (2D) pin-jointed truss 

structures in which the elements can be positioned at any angle.  

• Therefore, each node will have two displacement components, ux and uy, i.e. there are 

two ‘degrees of freedom’ per node.  
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Examples of 2D and 3D pin-jointed structures
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2.2  FE Formulation Steps

Assume linear, quadratic or higher-order 

interpolation functions for the displacements.

Strains can be obtained by differentiating the computed displacements over 

each element. Stresses can be obtained from the stress-strain relationships 

(constitutive equations)

Assemble all elements together to form the final 

equations: [K]global [u]global = [F]global

Use either a direct equilibrium or an energy approach 

to obtain: [k]element [u]element = [F]external

Step 1: Define the 

element and the shape 

functions

Step 2:  Satisfy the 

material law (the 

constitutive equations)

Step 3 : Derive the 

element stiffness matrix

Step 4:  Assemble the 

overall stiffness matrix

Step 5: Apply the 

boundary conditions and 

external loads

Step 6:  Solve the 

equations

Step 7:  Compute other 

variables

Solve the system of linear algebraic equations to obtain the nodal 

displacements

Satisfy the prescribed displacement and applied 

force conditions

Differentiate the displacement functions to obtain the 

strains, then use the material law (stress-strains 

relationships) 

Summary of the derivation 

of FE formulation
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Step 1: Define the element and the shape (interpolation) functions 

The first step in any FE analysis is to divide the structure into elements and examine 

the behaviour of a typical element. 

A 2-node Truss Element
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2.3  FE Formulation for 2D Pin-jointed Elements
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• For pin-jointed element, it is convenient to define a ‘local’ axis, i.e. an axis that is measured 

along the uniaxial direction of the element. The local (uniaxial) coordinate, x*, is defined 

along the element.

• The element is assumed to have two degrees of freedom per node, the global (Cartesian) 

displacements in the x and y-direction, ux and uy, which are components of the local 

uniaxial displacement, u*, along the element (in the direction of x*).  

• Fx and Fy are the global forces in the x and y-directions, which are components of the local 

uniaxial force, F*, along the element (in the direction of x*).

• For simplicity, the displacements, which are the unknown variables, will be assumed to 

vary linearly over each element, i.e. a constant strain (and stress) within each element, as 

follows:

  

     where C1 and C2 are constants.

*
21

* x C + C =u
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The displacement conditions at the two nodes are:

● At node 1 (where x* = 0), u* = u*
1

● At node 2 (where x* = Le),  u
* = u*

2

Therefore, the displacements of the two nodes 

can be written in terms of C1 and C2 in matrix form as follows:

  

These equations can be generalised as follows:

  

where 

[u*
e] is the displacement vector of the element,

[A] is a "coordinate matrix“

[C] contains the constants C1 and C2

 The element described here has a linear ‘shape function’. 
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In order to determine the constants C1 and C2, the matrix [C] is moved to the left hand side, as 

follows:

  

Although it is convenient to use the displacement vector u* along the element in the derivations, the 

global (Cartesian)  x and y components of the displacement vector are often used in practice. 

It is also convenient to group relevant variables together as matrices. 

  

where 

[ue] is the Cartesian element displacement vector 

[Fe] is the Cartesian element force vector. 

Note the order of the components in the vectors.
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By resolving the displacements along the direction of the element, 

the global displacement components can be easily determined as 

follows:

  

Substituting these expressions results in :
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Step 2:  Satisfy the material law (constitutive equations)

Since the displacement variable u* is along the element, only one strain component exists, 

which can be easily determined by differentiating equation (1), as follows:

  

Note that the strain per element is therefore constant. Substituting C2  gives the following 

expression for strain in terms of the displacement vector [ue]:

 

or, in general:

  

where [B] is a "dimension matrix", defined as follows:
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The generalised Hooke's law expressions for strain-stress can be written in matrix form as 

follows:

where [D] is a "material property matrix". 

In the pin-jointed element, [D]=E, since the load along the element is uniaxial.

Stresses can now be expressed as a function of displacements

      D=

       euBD=
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Step 3 : Derive the element stiffness matrix

(a) Direct equilibrium approach

To satisfy equilibrium at the nodes, the forces at 

each node can be written as follows - see Figure

by using the expression for the matrix [B], these 

force expressions can be expressed in matrix 

form as follows:
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The element stress can be simply obtained by dividing the uniaxial force F* by the element area, i.e.

 

We can write an expression for the element forces in terms of displacements as follows:

 

Therefore the element stiffness matrix [ke] can be defined as:

 

where [ke] is

By substituting for [B] and [D], and further manipulation, the element stiffness matrix can be expressed 

as follows:

  

Note that the element stiffness matrix is a symmetric matrix.

 eAF =*
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(b) Energy method

The total potential energy (TPE) of the element can be expressed as follows:

where v is the volume (here dv = Ae dx). 

Substituting for the stress and strain results in:

 

Note that [D]T=[D] since [D]=E is effectively symmetric. 
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Using the principle of minimum total potential energy, the differential of T.P.E. with respect to the 

displacement [u] must be zero. 

It is convenient to present the differentiation of the TPE in a symbolic manner by treating [u] as if it 

were an algebraic variable, as follows:

  

Therefore, the differential of the TPE can be expressed in matrix form as follows:

which leads to the following expression for the element stiffness:

which is identical to stiffness matrix derived using the direct equilibrium approach. 
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3.4  A Pin-jointed Structural Assembly Example

(1)

20 kN

3m

30o

(2)

(3)

(4)45o

A2
A1

A1

4m

x

y

Structural analysis example
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Problem Definition

(a) Geometry: 

 A frictionless pin-jointed structure consists of three members with the three lengths. 

          The members have a cross-sectional area of A1 (250 mm2) or A2 (450 mm2)

(b) Material Properties:

 Young's modulus for all members is 207 GN/m2.

(c) Boundary Conditions:  

 Points 1, 2 and 4 are fixed to a rigid surface, and a point force of 20 kN is applied to point 

3 at an angle of 45°.

(d) Objective of the analysis:

 The objective is to calculate the horizontal and vertical components of the displacement 

at point 3 and, using the calculated displacements, to determine the stress in the inclined 

member.

(1)

20 kN 
(2)

(3)

(4)45o
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Note that if the first and second nodes are swapped, the angle q will be 210°. 

However, the element stiffness matrix remains the same whether q = 30° or 210° is 

used.
 

(1) 

Le1 

   

q=30
o 

(3) 
e1 

(1)

20 kN 
(2)

(3)

(4)45°
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For element e1 :

First Node = Node 1

Second Node = Node 3

Angle θ = 30°

Length le = 3.464 m

Configuration of element e1



The force-displacement equations for this individual element is
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where X indicates no contribution to the [K] matrix, i.e. a vacancy in the matrix.

Putting this expression in the global system of equations results in the global stiffness matrix:



Configuration of element e2
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For element e2 :

First Node = Node 2

Second Node = Node 3

Angle θ = 0°

Length le = 3 m



The force-displacement equations for this individual element is
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Putting this expression in the global system of equations results in the contribution



For element e3 :

First Node = Node 3

Second Node = Node 4

Angle θ = 0°

Length le = 4 m

 

(3) (4) 
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e3 
q= 0

o 

(1)

20 kN 
(2)

(3)

(4)45°
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Configuration of element e3



The force-displacement equations for this individual element is
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Putting this expression in the global system of equations results in the contribution



Step 4:  Assemble the overall  stiffness matrix

The next stage is to assemble all the individual elements together to form the overall structure (the 

assembly of the elements). 

The displacement of a particular node must be the same for every element connected to it. 

The externally applied forces at the nodes must also be balanced by the forces on the elements at 

these nodes, i.e.

  

Therefore, a global system of equations can be written as follows:

 

where the matrices shown are the global assembly matrices containing all the nodal points. 

       ==
Assembly

ee

Aassembly

eexternal ukF F

      AssemblyAssemblyAssembly FuK =
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For a problem with N nodes with two degrees of freedom per node: 

 ● The global [K]Assembly is of size (2N x 2N)

 ● The global [u]Assembly and [F]Assembly vectors are of size (2N x 1)

  

Note that the global stiffness matrix [K]Assembly is sparsely populated (i.e. containing relatively few 

non-zero coefficients), even in structures containing a large number of elements. 

This is because not more than a few elements are connected to any one node.
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The global force-displacement equations for the whole assembly can 

be obtained by combining the stiffness matrix contributions of all the 

individual elements such that the [K] coefficients belonging to 

common nodes are added together. (1)

20 kN 
(2)

(3)

(4)45o
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The overall assembled global matrices are therefore:
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Step 5: Apply the boundary conditions and external loads

The displacement restraints at points 1, 2 and 4 are :
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and the external force vector contains only two components at node 3, as follows:

Therefore the global [u]Assembly and [F]Assembly vectors can be written as follows:

 



Step 6:  Solve the equations

Standard equation solvers, such as the Gaussian elimination technique can be used to solve the 

equations to determine the unknown variables (here only the displacements) at each node. 

Since the stiffness matrix is symmetric and sparsely populated, specially adapted solvers that can 

considerably reduce the memory storage requirements are often used.  

Since the displacements at nodes 1, 2 and 4 are already given, the rows and columns multiplying 

these displacements can be eliminated. 

  

from which the displacements of node 3 can be calculated as:

  

Note that a negative displacement indicates movement to the left. 

  
u

u
  

o

o

y

x














=






















45sin20

45cos20
10

735.3469.6

469.6745.51
10 3

3

3
6

mm = u

mm = u

y

x

229.4

256.0

3

3 −

(1)

20 kN 
(2)

(3)

(4)45o

2D Pin-jointed Finite Elements 30



Step 7:  Compute other variables

Once the displacements of the nodal points are computed, other parameters such as element 

stresses can be calculated.

  

Therefore, the stress in element e1 can be calculated as follows:

  

Similarly, the stresses in elements e2 and e3 can be calculated, i.e.
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2.5  Summary of Key Points

• In deriving the FE formulation for 2D pin-jointed structures, the first step is to define the 

element geometry and the order of variation of the displacement over each element. 

• For each element, an individual element stiffness expression is derived first and elements are 

then assembled together.

• In structural analysis problems, the individual element stiffness matrices are assembled together 

by superimposing the [K] coefficients of the nodes which are shared between two or more 

elements.

• The stiffness matrix of the assembly is always symmetric and sparsely populated even if a large 

number of elements is used in the FE mesh.

• The FE formulation for 2D pin-jointed elements can be easily extended, using the matrix 

expressions, to more sophisticated problems, e.g. truss elements in three-dimensional problems.
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2.6  More Pin-jointed structural examples
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