University of Nottingham Department of Mechanical, Materials and Manufacturing Engineering

Computer Modelling Techniques

SIMPLE 1D FINITE ELEMENTS

Lecture Outline

2.1	Introduction
2.2	A Simple Uniaxial 1D Pin-Jointed Element
2.3	A More General Energy Derivation of Element Stiffness
2.4	Element Assembly (More than one element)
2.5	Summary of Key Points

2.1 Introduction

- The FE analysis of a simple **one-dimensional (1D) pin-jointed element** is described and later extended to cover an assembly of 1D elements.
- These pin-jointed structures consist of **long thin elements** linked together by **frictionless pin-joints**, which are assumed to transmit only axial forces to the elements.

Important

- These elements **do not bend** Elements that allow bending are referred to as "beam elements" which are more complex than pin-jointed elements.
- Pin-jointed members are also referred to as *"trusses"*. Trusses are loaded only at the joints and the weight of the members may be neglected.

2.2 A Simple Uniaxial 1D Pin-Jointed Element

Figure 1: A one-dimensional bar element

• The main strategy in formulating the FE equations is to derive an expression for the element '*stiffness*', i.e. treating the element as if it were a spring of stiffness *k*, as follows:

$$k u = F$$

- where *k* is the stiffness, *u* is the displacement and *F* is the force.
- Assuming that the material is linear elastic, the uniaxial stress-strain relationship is given by Young's modulus as follows:

$$\sigma = E \varepsilon$$

• For a uniaxial bar, the strain is defined as the change in length divided by the original length, as follows:

$$\varepsilon = \frac{\Delta L}{L_e} = \frac{u_1 - u_2}{L_e}$$

• Note that this definition of strain is simplistic, and only applies to a uniaxial long bar under tension or compression. In 2D and 3D continuum problems, a more sophisticated definition of strain must be used.

The stress in the bar is given by:

$$\sigma = \frac{F}{A_e}$$

Substituting the stress and strain results in:

$$\frac{F}{A_e E} = \frac{u_1 - u_2}{L_e}$$

Hence, a general force-displacement relationship can be obtained as follows:

$$F = \frac{A_e E}{L_e} \left(u_1 - u_2 \right)$$

At nodes 1 and 2, the forces can therefore be expressed as two simultaneous equations, as follows: A = E

$$\frac{A_e E}{L_e} (u_1 - u_2) = F_1$$

$$\frac{A_e E}{L_e} (u_2 - u_1) = F_2$$

which can be expressed in matrix form as follows:

where
$$k_1 = \frac{E A_e}{L_e}$$

The matrix expression can be expressed in a more concise way as follows:

$$[k_e][u_e] = [F_e]$$
 Important

where $[k_e]$ is the "*element stiffness matrix*" (of size 2x2), $[u_e]$ and $[F_e]$ are the element displacement and force "vectors", respectively (each of size 2x1).

Note: The stiffness matrix is a **symmetrical matrix**. The symmetry is fortunate as it saves a considerable amount of computational time when using a numerical equation solving algorithm.

2.3 A More General Energy Derivation of Element Stiffness

- In more sophisticated elements, such as 3D continuum elements or shell elements, using an equilibrium approach is very tedious and is not adaptable to other elements.
- For a more generalised approach that is applicable to all element geometries, **the energy formulation is widely used** to derive FE formulations.
- The derivation of the FE formulation for any element of any geometry can be usually broken down into 7 main steps.

Step 1: Define the element and the shape (interpolation) functions

• A uniaxial element is said to have one "*degree of freedom*" per node, i.e. only one independent variable (the uniaxial displacement).

Important

- The displacement, *u*, is always used as the independent variable in FE formulation, as it automatically satisfies the compatibility equations, i.e. the element faces move together with no gaps or overlaps.
- If forces are used as the independent variables, the elements will not be compatible.

For a 2-node element, we assume a linear displacement function of *x* as follows:

$$u = C_1 + C_2 x$$

where C_1 and C_2 are constants.

These constants can be expressed in terms of the nodal displacements (u_1 and u_2) by satisfying the element's boundary conditions, which are:

- At node 1 (where x = 0), $u = u_1$
- At node 2 (where $x = L_e$), $u = u_2$.

Therefore, the constants C_1 and C_2 can be expressed in terms of u_1 and u_2 as follows:

$$u_1 = C_1 + 0 \quad \Rightarrow \quad C_1 = u_1$$
$$u_2 = C_1 + C_2 L_e \quad \Rightarrow \quad C_2 = \frac{u_2 - u_1}{L_e}$$

The displacement function can therefore be expressed in terms of the nodal displacements as follows: (u - u)

$$u = u_1 + \left(\frac{u_2 - u_1}{L_e}\right) x$$

which can be rearranged as follows:

$$u = \left(I - \frac{x}{L_e}\right)u_1 + \left(\frac{x}{L_e}\right)u_2$$

- This process is **similar to curve-fitting** where a straight line equation is obtained from the coordinates of two points at either end.
- Using u_1 and u_2 (instead of C_1 and C_2) is physically more meaningful since it expresses the displacement of any point on the element as a function of the two displacements at the corner nodes.
- The functions that multiply the nodal displacements u_1 and u_2 are called the "*shape functions*" or the "*interpolation functions*".
- For a 2-node element, the shape functions are linear.
- If more nodes are used per element, e.g. three nodes, the expression for the displacement function and the shape functions become quadratic.

Step 2: Satisfy the material law (constitutive equations)

The material law in this simple uniaxial problem is simply given by Young's modulus definition, as follows:

$$\sigma = E \varepsilon$$

Step 3: Derive the element stiffness matrix

- This energy approach is much **more convenient than the force equilibrium approach**, particularly when more complex 3D elements are used.
- The principle of **minimum total potential energy (T.P.E.)** can be used to minimise the strain energy function with respect to the nodal displacements.
- The principle states that the TPE must be minimised with respect to the displacements. The TPE is expressed as follows:

$$T.P.E. = U - W$$

whereU is the strain energyW is the work done by the forces

The strain energy, U, is given by:

$$U = \frac{1}{2} \left[\sigma \right] \left[\varepsilon \right] \times Volume$$

Therefore, for a uniaxial element of length L_e , the strain energy is:

$$U = \int_{0}^{L_{e}} \frac{1}{2} \sigma \varepsilon \left(A \, dx\right)$$

Using the more accurate definition of strain as a differential of the displacement function, the strain in this one-dimensional element is given by:

$$\varepsilon = \frac{du}{dx}$$

Since

$$u = \left(1 - \frac{x}{L_e}\right)u_1 + \left(\frac{x}{L_e}\right)u_2$$

The strain can be expressed as follows:

$$\frac{du_x}{dx} = \left(\frac{-l}{L_e}\right)u_1 + \left(\frac{l}{L_e}\right)u_2 = \frac{u_2 - u_1}{L_e}$$

Substituting for stress in terms of strain, the strain energy expression can be expressed as a function of the displacement as follows:

$$U = \int_{0}^{L_{e}} \frac{1}{2} (E \varepsilon) (\varepsilon) A dx$$

$$= \int_{0}^{L_{e}} \frac{1}{2} E (\varepsilon)^{2} A dx$$

$$= \frac{E A}{2} \int_{0}^{L_{e}} \left(\frac{u_{2} - u_{1}}{L_{e}} \right)^{2} dx$$

$$= \frac{E A}{2 L_{e}^{2}} (u_{2} - u_{1})^{2} [x]_{0}^{L_{e}}$$

$$= \frac{E A}{2 L_{e}} (u_{2}^{2} - 2 u_{2} u_{1} + u_{1}^{2})^{2}$$

The work done by the forces F_1 and F_2 is simply expressed as the force multiplying the displacement at each node, as follows:

$$W = F_1 u_1 + F_2 u_2$$

Therefore, the **T.P.E.** expression can be written in terms of the displacements as follows:

$$T.P.E = \frac{EA}{2L_e} \left(u_2^2 - 2u_2u_1 + u_1^2 \right) - \left(F_1u_1 + F_2u_2 \right)$$

Since there are two displacements in the TPE expression, the principle of minimum TPE requires minimisation with respect to both u_1 and u_2 . This yields two equations.

Minimising TPE with respect to *u*₁ gives:

$$\frac{\partial T.P.E.}{\partial u_1} = 0 = \frac{E A}{2 L_e} (-2 u_2 + 2 u_1) - F_1$$

Similarly, minimising T.P.E. with respect to u₂ gives:

$$\frac{\partial T.P.E.}{\partial u_2} = 0 = \frac{E A}{2L_e} (2 u_2 - 2 u_1) - F_2$$

The above two equations can be rearranged as follows:

$$0 = \frac{E A}{L_e} (u_1 - u_2) - F_1$$

$$0 = \frac{E A}{L_e} (-u_1 + u_2) - F_2$$

which can be combined in matrix form as follows:

$$\begin{bmatrix} k_1 & -k_1 \\ -k_1 & k_1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} F_1 \\ F_2 \end{bmatrix}$$

where $k_l = EA/L_e$, which is identical to the expression derived using the force.

2.4 Element Assembly (More than one element)

All FE formulations start with the derivation of the stiffness matrix for a single element, and then combining the element with its neighbouring elements (element assembly).

Two important relationships must be satisfied in the element assembly:

- (i) The **displacement of a particular node must be the same** for every element connected to it.
- (ii) The externally applied forces at the nodes on the surface must be **balanced by the 'internal' forces** on the elements at the nodes.

Step 4: Assemble the overall stiffness matrix

Figure 2: An element assembly of two uniaxial pin-jointed elements

For generality, we assume that the elements have different lengths, L_1 and L_2 , and different stiffnesses, k_1 and k_2 .

Taking **each element in turn**, the individual element stiffness matrices can be constructed and then assembled together.

Figure 3: Individual elements in the assembly

For element e_1 , the 'internal' force on node 1 is given by:

$$F_1 = k_1 \left(u_1 - u_2 \right)$$

Similarly, for element e_2 , the 'internal' force on node 3 is given by:

$$F_3 = k_2 \left(u_3 - u_2 \right)$$

Since node 2 is shared by the two elements, the 'internal' F_2 can be written as two components:

$$(F_2)_{e_1} = -F_1 = -k_1 (u_1 - u_2)$$

$$(F_2)_{e_2} = -F_3 = -k_2 (u_3 - u_2)$$

Therefore, the total 'internal' force on node 2 is given by:

$$F_{2} = (F_{2})_{e_{1}} + (F_{2})_{e_{2}} = -F_{1} - F_{3} = -k_{1}(u_{1} - u_{2}) - k_{2}(u_{3} - u_{2})$$

Therefore, three simultaneous equations can be written for u_1 , u_2 and u_3 , as follows:

$$F_{1} = k_{1} u_{1} - k_{1} u_{2}$$

$$F_{2} = -k_{1} u_{1} + (k_{1} + k_{2}) u_{2} - k_{2} u_{3}$$

$$F_{3} = -k_{2} u_{2} + k_{2} u_{3}$$

The above 3 equations can be assembled in matrix form as follows:

$$\begin{bmatrix} k_1 & -k_1 & 0 \\ -k_1 & k_1 + k_2 & -k_2 \\ 0 & -k_2 & k_2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} F_1 \\ F_2 \\ F_3 \end{bmatrix}$$

which can be written as a general equation for the stiffness of the assembly $[K]_{Assembly}$ (the whole FE mesh) as follows:

$$\begin{bmatrix} K \end{bmatrix}_{Assembly} \begin{bmatrix} u \end{bmatrix}_{Assembly} = \begin{bmatrix} F \end{bmatrix}_{Assembly}$$

Again, note the symmetry of the assembly stiffness matrix.

Step 5: Apply the boundary conditions and external loads

To obtain a **'unique' solution** of the problem, some displacement constraints (called 'boundary conditions)' and some loading (force) conditions must be prescribed at some of the nodes.

These conditions usually take one of the following forms:

(i) Prescribed displacement (called 'Boundary Condition'):
 A zero or non-zero prescribed nodal displacement, or sliding against a rigid surface.

(ii) **Prescribed load (force):**

An applied force in a given direction or a prescribed pressure.

Note that if a force is not prescribed at a given node, it is automatically assumed to have a prescribed nodal force of zero (i.e. a free surface)..

Important

As an example, consider the problem shown below.

(i) A prescribed displacement (i.e. boundary condition) of $u_1=0$.

Note that both u_2 and u_3 are unknown and will be calculated by solving the simultaneous equations.

(ii) A non-zero prescribed external force (load) of $F_3 = W$.

Note that nodes 1 and 2 are automatically assigned a zero prescribed external force, i.e. $F_1=0$ and $F_2=0$.

Figure 4: Element assembly example with boundary conditions and loads

Implementing the prescribed values in the assembly equation gives:

$$\begin{bmatrix} k_1 & -k_1 & 0 \\ -k_1 & k_1 + k_2 & -k_2 \\ 0 & -k_2 & k_2 \end{bmatrix} \begin{bmatrix} 0 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ W \end{bmatrix}$$

Since u_1 is given, the first equation is not required

$$\begin{bmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 \end{bmatrix} \begin{bmatrix} u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} 0 \\ W \end{bmatrix}$$

Step 6: Solve the simultaneous equations

- Most FE practical applications contain thousands or hundreds of thousands of nodes, and can only be **solved numerically**.
- Standard numerical equation solvers, such as the Gaussian elimination technique can be used to solve the equations.
- By solving the simultaneous equation by algebraic manipulation, the two unknown displacements can be obtained:

$$u_2 = \frac{W}{k_1}$$
$$u_3 = \frac{W}{k_2} + \frac{W}{k_1}$$

Step 7: Compute other variables

- After solving the assembly equations, **displacements at all the nodal points** are determined.
- From the displacement values, the **element strains** can be obtained from the straindisplacement relationship.
- The element stresses are obtained from the material law. *Important*
- Remember that only the displacements are used as the independent variables.

 For this reason, the computed FE displacements are usually (slightly) more accurate that the computed FE stresses.

Important

2.5 Summary of Key Points

- In deriving the FE formulation, the first step is to **define the order of variation** (e.g. linear or quadratic) of displacement (not force) over each element.
- **Displacements are the only 'independent' variables** in FE formulations. All other variables (such as force, stress, strain, etc.) are derived from the displacements.
- A linear shape function can be used with 2-node pin-jointed elements. This means that the displacement is allowed to vary linearly per element

The strain, which is a differential of the displacement, is therefore constant per element.

For linear elastic analysis, the **stress is also constant per element** since it is linearly dependent on strain.

• For each element, **an element stiffness expression** can be derived as follows:

$$[k_e][u_e] = [F_e]$$

- Two alternative approaches can be used to derive the element stiffness matrix; either a **direct equilibrium (non-energy) approach**, or a **more general energy approach** (minimising the total potential energy (TPE)).
- The individual element stiffness matrices are **assembled together in the global stiffness matrix** by combining the forces (and element stiffness) of the nodes which are shared between two or more elements.
- The element stiffness matrix and the overall stiffness matrix of the assembly are always symmetric.
- To obtain a unique solution of the simultaneous equations, **boundary conditions and loads** must be prescribed at some of the nodes.