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2.1 Introduction

• The FE analysis of a simple one-dimensional (1D) pin-jointed element is described 
and later extended to cover an assembly of 1D elements. 

• These pin-jointed structures consist of long thin elements linked together by 
frictionless pin-joints, which are assumed to transmit only axial forces to the 
elements. 

• These elements do not bend.  Elements that allow bending are referred to as “beam 
elements” which are more complex than pin-jointed elements.

• Pin-jointed members are also referred to as “trusses”. Trusses are loaded only at the 
joints and the weight of the members may be neglected.

Important

3



Simple 1D Finite ElementsSimple 1D Finite Elements

2.2   A Simple Uniaxial 1D Pin-Jointed Element

u1 u2

Node 1

Le

Node 2

Ae

x

Figure 1: A one-dimensional bar element
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• The main strategy in formulating the FE equations is to derive an expression for the 
element ‘stiffness’, i.e. treating the element as if it were a spring of stiffness k, as follows:

• where k is the stiffness, u is the displacement and F is the force.

• Assuming that the material is linear elastic, the uniaxial stress-strain relationship is given 
by Young’s modulus as follows:

• For a uniaxial bar, the strain is defined as the change in length divided by the original 
length, as follows:

• Note that this definition of strain is simplistic, and only applies to a uniaxial long bar 
under tension or compression. In 2D and 3D continuum problems, a more sophisticated 
definition of strain must be used.

 F= uk

es  E = 

L
u - u = 

L
L = 

ee

21De
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The stress in the bar is given by: 

Substituting the stress and strain results in:

Hence, a general force-displacement relationship can be obtained as follows:

eA
F =s

L
u - u =

 EA
F

ee

21

( )21 u - u 
L
 EA = F
e

e
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At nodes 1 and 2, the forces can therefore be expressed as two simultaneous equations, as 
follows:

which can be expressed in matrix form as follows:

where 

The matrix expression can be expressed in a more concise way as follows:

where [ke] is the "element stiffness matrix" (of size 2x2), [ue] and [Fe] are the element 
displacement and force “vectors”, respectively (each of size 2x1).

Note: The stiffness matrix is a symmetrical matrix. The symmetry is fortunate as it saves a 
considerable amount of computational time when using a numerical equation solving algorithm.
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2.3 A More General Energy Derivation of Element Stiffness

• In more sophisticated elements, such as 3D continuum elements or shell elements, using 
an equilibrium approach is very tedious and is not adaptable to other elements. 

• For a more generalised approach that is applicable to all element geometries, the energy 
formulation is widely used to derive FE formulations.

• The derivation of the FE formulation for any element of any geometry can be usually 
broken down into 7 main steps.
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Step 1: Define the element and the shape (interpolation) functions

• A uniaxial element is said to have one "degree of freedom" per node, i.e. only one 
independent variable (the uniaxial displacement). 

• The displacement, u, is always used as the independent variable in FE formulation, as it  
automatically satisfies the compatibility equations, i.e. the  element faces move together 
with no gaps or overlaps. 

• If forces are used as the independent variables, the elements will not be compatible. 

Important
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For a 2-node element, we assume a linear displacement function of x as follows:

where C1 and C2 are constants. 

These constants can be expressed in terms of the nodal displacements (u1 and u2) by satisfying the 
element’s boundary conditions, which are:

● At node 1 (where x = 0), u = u1
● At node 2 (where x = Le), u = u2. 

Therefore, the constants C1 and C2 can be expressed in terms of u1 and u2 as follows:

The displacement function can therefore be expressed in terms of the nodal displacements as 
follows:

which can be rearranged as follows:

x C + C = u 21

e
e L
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• This process is similar to curve-fitting where a straight line equation is obtained from the 
coordinates of two points at either end. 

• Using u1 and u2 (instead of C1 and C2) is physically more meaningful since it expresses the 
displacement of any point on the element as a function of the two displacements at the corner 
nodes.

• The functions that multiply the nodal displacements u1 and u2 are called the "shape 
functions" or the “interpolation functions”. 

• For a 2-node element, the shape functions are linear. 

• If more nodes are used per element, e.g. three nodes, the expression for the displacement 
function and the shape functions become quadratic.
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Step 2: Satisfy the material law (constitutive equations)

The material law in this simple uniaxial problem is simply given by Young’s modulus
definition, as follows:

es  E = 
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Step 3: Derive the element stiffness matrix

• This energy approach is much more convenient than the force equilibrium approach, 
particularly when more complex 3D elements are used.

• The principle of minimum total potential energy (T.P.E.) can be used to minimise the 
strain energy function with respect to the nodal displacements. 

• The principle states that the TPE must be minimised with respect to the displacements. 
The TPE is expressed as follows:

where 
U is the strain energy
W is the work done by the forces

W - U = T.P.E.
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The strain energy, U, is given by:

Therefore, for a uniaxial element of length Le, the strain energy is:

Using the more accurate definition of strain as a differential of the displacement function, the strain 
in this one-dimensional element is given by:

Since

The strain can be expressed as follows:
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Substituting for stress in terms of strain, the strain energy expression can be expressed 
as a function of the displacement as follows:

( ) ( )

( )

( ) [ ]

( )2112
2
2

12
2

2

12
2

2

2
2

2

2

2
1

2
1

uuuu
L
AE =

x uu 
L 

A E  =

dx 
L

uu  A E =

dx A   E  =

 dx A  E   = U

e

L
0

 

e

e

 L

0

 
L

0

L

0

e

e

e

e

+-

-

÷÷
ø

ö
ç
è

æ -
ò

ò

ò

e

ee

15



Simple 1D Finite ElementsSimple 1D Finite Elements

The work done by the forces F1 and F2 is simply expressed as the force multiplying the 
displacement at each node, as follows:

2211 uFuFW +=
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Therefore, the T.P.E. expression can be written in terms of the displacements as follows:

Since there are two displacements in the TPE expression, the principle of minimum TPE 
requires minimisation with respect to both u1 and u2 . This yields two equations.  

Minimising TPE with respect to u1 gives:

Similarly, minimising T.P.E. with respect to u2 gives:
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The above two equations can be rearranged as follows:

which can be combined in matrix form as follows:

where k1 = EA/Le , which is identical to the expression derived using the force.  
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2.4  Element Assembly (More than one element)

All FE formulations start with the derivation of the stiffness matrix for a single element, 
and then combining the element with its neighbouring elements (element assembly). 

Two important relationships must be satisfied in the element assembly:

(i) The displacement of a particular node must be the same for every element 
connected to it. 

(ii) The externally applied forces at the nodes on the surface must be balanced by the 
‘internal’ forces on the elements at the nodes.
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Step 4:  Assemble the overall  stiffness matrix

u1 u3

Node 1

L1

Node 3

e2

x

u2e1

Node 2
L2

Figure 2: An element assembly of two uniaxial pin-jointed elements

20



Simple 1D Finite ElementsSimple 1D Finite Elements

For generality, we assume that the elements have different lengths, L1 and L2, and different 
stiffnesses, k1 and k2.  

Taking each element in turn, the individual element stiffness matrices can be constructed and 
then assembled together.

u1

Node 1

L1
x

u2e1

Node 2

u2

Node 2
L2

x

u3e2

Node 3

Figure 3: Individual elements in the assembly
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For element e1, the ‘internal’ force on node 1 is given by:

Similarly, for element e2, the ‘internal’ force on node 3 is given by:

Since node 2 is shared by the two elements, the ‘internal’ F2 can be written as two 
components:

Therefore, the total ‘internal’ force on node 2 is given by:
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Therefore, three simultaneous equations can be written for u1, u2 and u3, as follows:

The above 3 equations can be assembled in matrix form as follows:

which can be written as a general equation for the stiffness of the assembly [K]Assembly (the whole 
FE mesh)  as follows:

Again, note the symmetry of the assembly stiffness matrix.
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Step 5: Apply the boundary conditions and external loads

To obtain a ‘unique’ solution of the problem, some displacement constraints (called 
‘boundary conditions)’ and some loading (force) conditions must be prescribed at some of the 
nodes. 

These conditions usually take one of the following forms: 

(i) Prescribed displacement (called ‘Boundary Condition’): 
A zero or non-zero prescribed nodal displacement, or sliding against a rigid surface.

(ii) Prescribed load (force): 
An applied force in a given direction or a prescribed pressure. 

Note that if a force is not prescribed at a given node, it is automatically assumed to 
have a prescribed nodal force of zero (i.e. a free surface)..

Important
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As an example, consider the problem shown below.

(i) A prescribed displacement (i.e. boundary condition) of u1=0. 

Note that both u2 and u3 are unknown and will be calculated by solving the simultaneous 
equations.

(ii) A non-zero prescribed external force (load) of F3=W. 

Note that nodes 1 and 2 are automatically assigned a zero prescribed external force, 
i.e. F1=0 and F2=0. 

Figure 4: Element assembly example with boundary conditions and loads

W
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Implementing the prescribed values in the assembly equation gives:

Since u1 is given, the first equation is not required
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Step 6:  Solve the simultaneous equations

• Most FE practical applications contain thousands or hundreds of thousands of nodes, and can 
only be solved numerically.

• Standard numerical equation solvers, such as the Gaussian elimination technique can be 
used to solve the equations.

• By solving the simultaneous equation by algebraic manipulation, the two unknown 
displacements can be obtained:
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Step 7:  Compute other variables

• After solving the assembly equations, displacements at all the nodal points are 
determined.  

• From the displacement values, the element strains can be obtained from the strain-
displacement relationship.

• The element stresses are obtained from the material law.

• Remember that only the displacements are used as the independent variables. 

• For this reason, the computed FE displacements are usually (slightly) more 
accurate that the computed FE stresses. 

Important

Important

28



Simple 1D Finite ElementsSimple 1D Finite Elements

2.5 Summary of Key Points

● In deriving the FE formulation, the first step is to define the order of variation (e.g. linear 
or quadratic) of displacement (not force) over each element. 

● Displacements are the only ‘independent’ variables in FE formulations. All other variables 
(such as force, stress, strain, etc.) are derived from the displacements.

● A linear shape function can be used with 2-node pin-jointed elements. 
This means that the displacement is allowed to vary linearly per element

The strain, which is a differential of the displacement, is therefore constant per element. 

For linear elastic analysis, the stress is also constant per element since it is linearly 
dependent on strain.

● For each element, an element stiffness expression can be derived as follows:

[ ][ ] [ ]F = u k eee
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● Two alternative approaches can be used to derive the element stiffness matrix; 
either a direct equilibrium (non-energy) approach, 
or a more general energy approach (minimising the total potential energy (TPE)). 

● The individual element stiffness matrices are assembled together in the global 
stiffness matrix by combining the forces (and element stiffness) of the nodes 
which are shared between two or more elements.

● The element stiffness matrix and the overall stiffness matrix of the assembly are 
always symmetric.

● To obtain a unique solution of the simultaneous equations, boundary conditions 
and loads must be prescribed at some of the nodes.
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