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Computer Modelling 

Techniques

Mirco Magnini

Numerical Methods 

Lecture 1: short intro & solution of 

1D steady diffusion equation
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Educational 
Aims

To provide students with a basic knowledge and 
understanding of the mainstream computer modelling 
techniques used in modern engineering practice, including 
Finite Element and Computational Fluid Dynamics methods.

Module name Computer Modelling Techniques
MMME3086

Credits 20 (requires ~200 hrs study)

Year/Level Level 3 

Semester Autumn Semester

Module 
Convenor

Dr Mirco Magnini

Teaching staff Dr Mirco Magnini (Numerical Methods, NM)
Dr Chris Bennett, Dr Luke Parry (Finite Element 
Analysis, FEA)
Dr Donald Giddings (Computational Fluid Dynamics, 
CFD)

Module specs
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Module specs

MMME3086 covers the whole simulation procedure and the most popular

simulation software for CFD (fluids) and FEA (solid):

Dr. Mirco Magnini

Numerical Methods: FV, fundamental aspects, Matlab

Teaching weeks 1-3; NM coursework

Dr. Chris Bennett

Finite Element Analysis: FE, solid mechanics, Abaqus

Teaching weeks 4-7; FEA coursework

Dr. Don Giddings

Computational Fluid Dynamics: FV, ANSYS

Teaching weeks 8-11; CFD coursework

https://www.mathworks.com/products/matlab.html
https://www.3ds.com/products-services/simulia/products/abaqus/
https://www.ansys.com/en-gb
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Method of assessment

Coursework Three marked coursework assignments:
 NM coursework (30%)
 FEA coursework (35%)
 CFD coursework (35%)

• The assignments do not require supervision.
• Time required to complete each assignment:
        6 hours approx. 
• Submission deadline: 
        2 weeks after releasing the assignment
• Educational objective: 

    To gain some practical experience of the  
    fundamentals of solving numerical problems and 
    running FEA and CFD engineering software codes   
    that are widely used in industry.
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Timetable

Teaching 

week
Section w/b Lecture topic (2h) Seminar session (2h) Coursework dates

1 NM 02 Oct Steady diffusion equation
1D steady finite-volume in 

Matlab

2 NM 09 Oct
Solution of linear systems, unsteady 

diffusion equation

Gauss-Seidel method in 

Matlab

3 NM 16 Oct
Solution of nonlinear equations, 

numerical integration

1D unsteady finite-volume 

in Matlab

Mon 16 Oct: NM 

coursework release

4 FEA 23 Oct 1D FE, Stiffness Matrices
Stiffness Matrix Assembly, 

and Solution

5 FEA 30 Oct Truss/Pin-jointed FE Abaqus: Geo, Mesh
Mon 30 Oct: NM 

coursework deadline

6 FEA 06 Nov Continuum Elements, Plates and Shells
Abaqus: BCs, Loading, 

Solution, Post-processing

Thu 09 Nov: FEA 

coursework release

7 FEA 13 Nov Practical Notes on FE FEA coursework support

8 CFD 20 Nov
Practical introduction to CFD and a 

commercial code

Model creation and mesh 

generation. 

Thu 23 Nov: FEA 

coursework deadline

9 CFD 27 Nov

Derive the Navier Stokes equations of 

fluid motion in 3D for an incompressible, 

steady flow

Setting up the models in 

CFD solution and 

achieving converged 

solution in Fluent

Thu 30 Nov: CFD 

coursework release

10 CFD 04 Dec
Demonstrate how the finite volume 

numerical method works in a 1D case

Post solution processing 

of CFD model and CW 

support

11 CFD 11 Dec CFD overview and revision -
Thu 14 Dec: CFD 

coursework deadline

Lectures: Thursday, 11-13, Coates Road Auditorium. 

Seminars: Friday, 09-11, Coates Road Auditorium. Bring your own laptop. 
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CMT – Part 1: Numerical Methods

Teacher – Mirco Magnini, UoN-webpage

Office – Coates B100a

Email – mirco.magnini@nottingham.ac.uk

Q&A – Forum in Moodle (NM)

Timetable

Teaching 

week
w/b Lecture engagement (Thu, h11-13)

In-person seminar 

(Fri, h09-11)

1 02 Oct L1: Steady 1D heat equation (2h)
Matlab: 1D steady 

finite-volume

2 09 Oct
L2: Solution of linear systems (1h), 

L3: Unsteady heat equation (1h)

Matlab: Gauss-Seidel 

method

3 16 Oct
L4: Solution of nonlinear equations (1h),

L5: Numerical integration (1h)

Matlab: 1D unsteady 

finite-volume

NM Coursework – Released on Mon 16 Oct, deadline Mon 30 Oct

Seminars – Coates Road Auditorium, bring your laptop! 

https://www.nottingham.ac.uk/research/groups/fluids-and-thermal-engineering/meet-the-team/mirco.magnini
mailto:mirco.magnini@nottingham.ac.uk
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CMT – Part 1: Numerical Methods

Scope of CMT – Part 1: Numerical Methods

➢ Learn how to discretise an ODE/PDE, L1

➢ Solve a discretised ODE/PDE, seminar 1 (demo 1)

➢ Learn how to solve the resulting system of linear equations, L2

➢ Implement a solver for linear equations, seminar 2 (demo 2)

➢ Learn how to discretise unsteady PDEs, L3

➢ Solve an unsteady PDE, seminar 3 (demo 3)

➢ Learn how to solve nonlinear equations, L4

➢ Learn how to perform numerical integration, L5
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CMT – Part 1: Numerical Methods

Resources

Slides/notes/demos on Moodle cover the entire material for NM. 

Matlab is installed in all computer rooms and Engineering Virtual Desktop. To install it in your

own machine, follow the instructions on workspace. Consider reviewing the MATLAB Onramp

training if you are not familiar with the software.

Books – If you wish to know more, my notes are based on:

• Numerical Heat Transfer and Fluid Flow, S. V. Patankar, Hemisphere Publisher, 1980 

https://nusearch.nottingham.ac.uk/permalink/f/gq7rlv/44NOTUK_ALMA2172538080005561

• Numerical Recipes, W. H. Press et al., Cambridge University Press, 2007 

https://nusearch.nottingham.ac.uk/permalink/f/11rbvif/44NOTUK_ALMA21106504400005561

• Applied Numerical Methods with MATLAB for engineers and scientists, S. C. Chapra, McGraw-Hill 2012 

https://nusearch.nottingham.ac.uk/permalink/f/11rbvif/44NOTUK_ALMA21106792720005561

• Numerical Analysis, R. L. Burden et al., Cengage Learning, 2016 (available online) 

https://nusearch.nottingham.ac.uk/permalink/f/1m5tnd/44NOTUK_ALMA51125623900005561

• An Introduction to Computational Fluid Dynamics, H. K. Versteeg et al., Pearson Prentice Hall, 2007 

https://nusearch.nottingham.ac.uk/permalink/f/1m5tnd/44NOTUK_ALMA2183048930005561

N.B. If you Google any of these books, it should not be hard to find free online versions for download 

https://www.nottingham.ac.uk/dts/communications/remote-working/virtual-desktop.aspx
https://workspace.nottingham.ac.uk/display/Software/Matlab
https://matlabacademy.mathworks.com/details/matlab-onramp/gettingstarted
https://nusearch.nottingham.ac.uk/permalink/f/gq7rlv/44NOTUK_ALMA2172538080005561
https://nusearch.nottingham.ac.uk/permalink/f/11rbvif/44NOTUK_ALMA21106504400005561
https://nusearch.nottingham.ac.uk/permalink/f/11rbvif/44NOTUK_ALMA21106792720005561
https://nusearch.nottingham.ac.uk/permalink/f/1m5tnd/44NOTUK_ALMA51125623900005561
https://nusearch.nottingham.ac.uk/permalink/f/1m5tnd/44NOTUK_ALMA2183048930005561
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Numerical Methods – L1

This week’s menu (2h lecture + 2h seminar)

➢ ODEs/PDEs

➢ 1D steady-state diffusion problems

➢ The finite-volume method in 1D

➢ The finite-volume method in 2D – structured mesh

➢ The finite-volume method in 3D – structured mesh

➢ The finite-volume method – unstructured mesh

➢ Indicators of solution accuracy

➢ Seminar 1/demo 1: 1D steady FV method in Matlab (Worked examples 1,2&3)

Expected outcome: know how to discretise an ODE/PDE using the finite-

volume method; use matlab to obtain the numerical solution; be able to use 

different tools to verify the accuracy of the solution. 



10

Partial Differential Equations (PDEs)

The aim of this and next lecture is to develop a numerical method for the discrete solution of 

Partial Differential Equations (PDEs).

𝑎0 𝑥 𝜙 + 𝑎1 𝑥
𝑑𝜙

𝑑𝑥
+ 𝑎2 𝑥

𝑑2𝜙

𝑑𝑥2 + ⋯ + 𝑎𝑛 𝑥
𝑑𝑛𝜙

𝑑𝑥𝑛 + 𝑏 𝑥 = 0

Ordinary Differential Equation (ODE): differential equation that contains one or more 

derivatives of an unknown function that depends on only one variable. It is linear if it is of the 

first degree in the unknown function and its derivatives, for example:

Partial Differential Equation (PDE): differential equation that contains one or more partial 

derivatives of an unknown function that depends on at least two variables. It is linear if it is of 

the first degree in the unknown function and its partial derivatives, for example:

𝐴 𝑥, 𝑦
𝜕2𝜙

𝜕𝑥2 + 𝐵 𝑥, 𝑦
𝜕2𝜙

𝜕𝑥 𝜕𝑦
+ 𝐶 𝑥, 𝑦

𝜕2𝜙

𝜕𝑦2 + 𝐷 𝑥, 𝑦, 𝜙 = 0
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A PDE example: The heat equation

𝜕 𝜌𝑐𝑝𝑇

𝜕𝑡
=

𝜕

𝜕𝑥
𝜆

𝜕𝑇

𝜕𝑥
+

𝜕

𝜕𝑦
𝜆

𝜕𝑇

𝜕𝑦
+

𝜕

𝜕𝑧
𝜆

𝜕𝑇

𝜕𝑧
+ 𝑆 𝑥, 𝑦, 𝑧, 𝑡, 𝑇

Variation of internal 

energy in the unit time

Heat diffusion Heat generation

Why/where is it important? Thermal management enters many engineering problems, for 

example in a racing car braking system

Source: C. Cravero, D. Marsano, MDPI Energies 15 (2022) 2934. 

https://www.mdpi.com/1996-1073/15/8/2934

https://www.mdpi.com/1996-1073/15/8/2934
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The heat equation

How is it derived? Let’s see a 2D example.

Energy balance:

Temporal variation of internal energy content =

Heat flux through boundaries + Internal generation

𝑑𝑥

𝑑𝑦

𝑥

𝑦

𝑞𝑥

𝑞𝑦

𝑞𝑥+𝑑𝑥

𝑞𝑦+𝑑𝑦

𝜕 𝜌𝑐𝑝𝑇

𝜕𝑡
𝑑𝑥 𝑑𝑦 =

𝑞𝑥+𝑑𝑥 = 𝑞𝑥 +
𝜕𝑞𝑥

𝜕𝑥
𝑑𝑥, 𝑞𝑦+𝑑𝑦 = 𝑞𝑦 +

𝜕𝑞𝑦

𝜕𝑦
𝑑𝑦

𝑞𝑥 − 𝑞𝑥+𝑑𝑥 𝑑𝑦 + 𝑞𝑦 − 𝑞𝑦+𝑑𝑦 𝑑𝑥 + 𝑆 𝑥, 𝑦, 𝑡, 𝑇  𝑑𝑥 𝑑𝑦

𝒒 = 𝑞𝑥 Ƹ𝒊 + 𝑞𝑦 Ƹ𝒋

𝜕 𝜌𝑐𝑝𝑇

𝜕𝑡
𝑑𝑥 𝑑𝑦 = −

𝜕𝑞𝑥

𝜕𝑥
𝑑𝑥 𝑑𝑦 −

𝜕𝑞𝑦

𝜕𝑦
𝑑𝑥 𝑑𝑦 + 𝑆 𝑥, 𝑦, 𝑡, 𝑇  𝑑𝑥 𝑑𝑦

Fourier law: 𝒒 = −𝜆∇𝑇 = −
𝜕𝑇

𝜕𝑥
Ƹ𝒊 −

𝜕𝑇

𝜕𝑦
Ƹ𝒋

𝜌: density [kg/m3]; 𝑐𝑝: specific heat [J/(kg*K)]; 𝜆: thermal conductivity [W/(m*K)]; 𝑞: heat flux [W/m2]; 

𝑆: source term [W/m3]   

𝜕 𝜌𝑐𝑝𝑇

𝜕𝑡
=

𝜕

𝜕𝑥
𝜆

𝜕𝑇

𝜕𝑥
+

𝜕

𝜕𝑦
𝜆

𝜕𝑇

𝜕𝑦
+ 𝑆 𝑥, 𝑦, 𝑡, 𝑇
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1D steady-state heat equation

• 1D: the problem depends only on one spatial coordinate

• Steady-state: the problem is independent of time

The heat equation becomes an ODE.

Many transport processes in engineering can be described by this equation! More in the notes…

Any solution method for this ODE will be applicable to different engineering problems!

Describes the 

diffusion process

Describes 

creation/destruction

𝑑

𝑑𝑥
𝜆

𝑑𝑇

𝑑𝑥
+ 𝑆 𝑥, 𝑇 = 0
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The discretisation concept

Differential problem to be solved: 

1D steady-state heat conduction

An analytical method seeks for the continuous T(x) satisfying the problem ∀𝑥 ∈ 0, 𝐿

A numerical method seeks for an approximate solution T1,…,Tn valid only at discrete 

locations x1,…,xn if we have n unknowns Ti, we need n equations! 

In general, we prefer to solve systems of algebraic linear equations of the kind:

Therefore, the specific numerical method adopted (FD,FV,FE,…) identifies:

• How to derive the discretization equation from the initial differential equation

• How to express derivatives as a function of the node values T1,…,Tn

• How to deal with nonlinear terms

… A×T=B

𝑎1,1𝑇1 + 𝑎1,2𝑇2 + ⋯ + 𝑎1,𝑖𝑇𝑖 + ⋯ + 𝑎1,𝑛𝑇𝑛 = 𝑏1

𝑎𝑛,1𝑇1 + 𝑎𝑛,2𝑇2 + ⋯ + 𝑎𝑛,𝑖𝑇𝑖 + ⋯ + 𝑎𝑛,𝑛𝑇𝑛 = 𝑏𝑛

𝑥𝑥 = 0
𝑥 = 𝐿

𝑇 = 𝑇𝑎 𝑇 = 𝑇𝑏

𝑑

𝑑𝑥
𝜆

𝑑𝑇

𝑑𝑥
+ 𝑆 𝑥, 𝑇 = 0, 

𝑇 𝑥 = 0 = 𝑇𝑎 , 𝑇 𝑥 = 𝐿 = 𝑇𝑏

0 < 𝑥 < 𝐿
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The finite-volume method – 1D

CV

𝑑

𝑑𝑥
𝜆

𝑑𝑇

𝑑𝑥
+ 𝑆 𝑥, 𝑇 = 0

Equation to be solved: 

1D steady-state heat conduction

From the differential to the discretized equation (internal nodes):

1. Discretisation of the domain into control volumes (CV)

2. Integration over the CV:

න

𝑉

𝑑

𝑑𝑥
𝜆

𝑑𝑇

𝑑𝑥
𝑑𝑉 + න

𝑉

𝑆 𝑥, 𝑇 𝑑𝑉 = 0, 𝑑𝑉 = 𝐴𝑑𝑥,

CV cross-section area

𝜆
𝑑𝑇

𝑑𝑥
𝑒

− 𝜆
𝑑𝑇

𝑑𝑥
𝑤

+ ҧ𝑆Δ𝑥 = 0

𝜆
𝑑𝑇

𝑑𝑥
𝑤

𝑒

+ ҧ𝑆 𝑥 𝑤
𝑒 = 0

Average value of S

within the CV

How do we discretise the derivatives?

We need an assumption for the behavior 

of 𝑇(𝑥) between the CV-centres

න

𝑤

𝑒
𝑑

𝑑𝑥
𝜆

𝑑𝑇

𝑑𝑥
𝐴𝑑𝑥 + න

𝑤

𝑒

𝑆 𝑥, 𝑇 𝐴𝑑𝑥 = 0



16

𝑇 𝑥𝑃 = 𝑇 𝑥𝑒 − 𝛿𝑥 𝑒− ቤ
𝑑𝑇

𝑑𝑥
𝑥𝑒

+
𝛿𝑥 𝑒−

2

2
อ

𝑑2𝑇

𝑑𝑥2

𝑥𝑒

−
𝛿𝑥 𝑒−

3

6
อ

𝑑3𝑇

𝑑𝑥3

𝑥𝑒

The finite-volume method – 1D

𝒅𝑻

𝒅𝒙
?

Taylor expansion around generic 𝑥𝑖:

𝑇 𝑥 = 𝑇 𝑥𝑖 + 𝑥 − 𝑥𝑖 ቤ
𝑑𝑇

𝑑𝑥
𝑥𝑖

+
𝑥 − 𝑥𝑖

2

2
อ

𝑑2𝑇

𝑑𝑥2

𝑥𝑖

+
𝑥 − 𝑥𝑖

3

6
อ

𝑑3𝑇

𝑑𝑥3

𝑥𝑖

+ ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟

Truncation error

Linear profile assumption: we retain terms until 2nd-order

𝑇 𝑥𝐸 = 𝑇 𝑥𝑒 + 𝛿𝑥 𝑒+ ቤ
𝑑𝑇

𝑑𝑥
𝑥𝑒

+
𝛿𝑥 𝑒+

2

2
อ

𝑑2𝑇

𝑑𝑥2

𝑥𝑒

+
𝛿𝑥 𝑒+

3

6
อ

𝑑3𝑇

𝑑𝑥3

𝑥𝑒

ቤ
𝑑𝑇

𝑑𝑥
𝑥𝑒

=
𝑇 𝑥𝐸 − 𝑇 𝑥𝑃

𝛿𝑥 𝑒
−

𝛿𝑥 𝑒
2

24
อ

𝑑3𝑇

𝑑𝑥3

𝑒

Truncation error 𝑂 𝛿𝑥 𝑒
2𝑇𝑒

′′′ : order

of accuracy of the approximation

Higher-order profiles (e.g. quadratic) exist, but require more points

𝛿𝑥 𝑒−

= 𝛿𝑥 𝑒+
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The finite-volume method – 1D

𝑑

𝑑𝑥
𝜆

𝑑𝑇

𝑑𝑥
+ 𝑆 𝑥, 𝑇 = 0

𝜆
𝑑𝑇

𝑑𝑥
𝑒

= 𝜆𝑒

𝑇𝐸 − 𝑇𝑃

𝛿𝑥𝑒
, 𝜆

𝑑𝑇

𝑑𝑥
𝑤

= 𝜆𝑤

𝑇𝑃 − 𝑇𝑊

𝛿𝑥𝑤
, ҧ𝑆 = 𝑆𝑃𝑇𝑃 + 𝑆𝐶

𝜆
𝑑𝑇

𝑑𝑥
𝑒

− 𝜆
𝑑𝑇

𝑑𝑥
𝑤

+ ҧ𝑆Δ𝑥 = 0

Approximation of derivatives and linearisation of source term:

𝜆𝑒

𝑇𝐸 − 𝑇𝑃

𝛿𝑥𝑒
− 𝜆𝑤

𝑇𝑃 − 𝑇𝑊

𝛿𝑥𝑤
+ 𝑆𝑃𝑇𝑃 + 𝑆𝐶 Δ𝑥 = 0

−
𝜆𝑤

𝛿𝑥𝑤
𝑇𝑊 +

𝜆𝑤

𝛿𝑥𝑤
+

𝜆𝑒

𝛿𝑥𝑒
− 𝑆𝑃Δ𝑥 𝑇𝑃 −

𝜆𝑒

𝛿𝑥𝑒
𝑇𝐸 = 𝑆𝐶Δ𝑥

𝑎𝑊𝑇𝑊 + 𝑎𝑃𝑇𝑃 + 𝑎𝐸𝑇𝐸 = 𝑏

Final linear algebraic equation

𝑎𝑊 = −
𝜆𝑤

𝛿𝑥𝑤
, 𝑎𝑃 =

𝜆𝑤

𝛿𝑥𝑤
+

𝜆𝑒

𝛿𝑥𝑒
− 𝑆𝑃Δ𝑥, 𝑎𝐸 = −

𝜆𝑒

𝛿𝑥𝑒
,  𝑏 = 𝑆𝐶Δ𝑥

This was valid for all internal CVs, but what about boundary CVs?
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The finite-volume method – 1D

Discretised equations for the boundary CVs - Dirichlet boundary conditions:

1st CV:                                    with𝑎𝑃𝑇𝑃 + 𝑎𝐸𝑇𝐸 = 𝑏, 𝑎𝑃 = 1, 𝑎𝐸 = 0, 𝑏 = 𝑇𝑎

nth CV:                                    with𝑎𝑊𝑇𝑊 + 𝑎𝑃𝑇𝑃 = 𝑏, 𝑎𝑃 = 1, 𝑎𝑊 = 0, 𝑏 = 𝑇𝑏𝑇𝑎 𝑇𝑏

CVB

∆𝑥𝐵

The temperature at the left boundary is known, for 

example we know that 𝑇 𝑥 = 0 = 𝑇𝑎. Then we can write 

a “dummy” equation of the kind: 

𝑎𝐵𝑇𝐵 + 𝑎𝐼𝑇𝐼 = 𝑏, 𝑎𝐵 = 1, 𝑎𝐼 = 0, 𝑏 = 𝑇𝑎

Or, with our usual notation:

Discretised equations for the boundary CVs - Neumann boundary conditions:

Instead of the temperature, at the left boundary we know the heat flux 𝑞𝐵. This sets a condition 

on the temperature gradient, because owing to the Fourier’s law:  

𝑞 = −𝜆
𝑑𝑇

𝑑𝑥
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The finite-volume method – 1D

CVB

∆𝑥𝐵

Discretised equations for the boundary CVs - Neumann boundary conditions:

Instead of the temperature, at the left boundary we know the heat flux 𝑞𝐵. This sets a condition 

on the temperature gradient, because owing to the Fourier’s law:  

𝑞 = −𝜆
𝑑𝑇

𝑑𝑥

We derive a discretisation equation for CVB by integrating 

the diffusion equation as done before:

න

𝐵

𝑖
𝑑

𝑑𝑥
𝜆

𝑑𝑇

𝑑𝑥
𝐴 𝑑𝑥 + න

𝐵

𝑖

𝑆 𝑥, 𝑇 𝐴 𝑑𝑥 = 0 𝜆
𝑑𝑇

𝑑𝑥
𝐵

𝑖

+ ҧ𝑆 𝑥 𝐵
𝑖 = 0

𝜆
𝑑𝑇

𝑑𝑥
𝑖

− 𝜆
𝑑𝑇

𝑑𝑥
𝐵

+ ҧ𝑆Δ𝑥𝐵 = 0

𝑞𝐵

𝜆𝑖

𝑇𝐼 − 𝑇𝐵

𝛿𝑥𝑖
+ 𝑞𝐵 + 𝑆𝑃𝑇𝐵 + 𝑆𝐶 Δ𝑥𝐵 = 0

𝑎𝐵𝑇𝐵 + 𝑎𝐼𝑇𝐼 = 𝑏, 𝑎𝐵 =
𝜆𝑖

𝛿𝑥𝑖
− 𝑆𝑃Δ𝑥𝐵 , 𝑎𝐼 = −

𝜆𝑖

𝛿𝑥𝑖
,  𝑏 = 𝑆𝐶Δ𝑥𝐵 + 𝑞𝐵

Or, with our usual notation:

𝑎𝑃𝑇𝑃 + 𝑎𝐸𝑇𝐸 = 𝑏, 𝑎𝑃 =
𝜆𝑒

𝛿𝑥𝑒
− 𝑆𝑃Δ𝑥𝐵 , 𝑎𝐸 = −

𝜆𝑒

𝛿𝑥𝑒
, 𝑏 = 𝑆𝐶Δ𝑥𝐵 + 𝑞𝐵
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The finite-volume method – 1D

Assembling the linear system of equations:

1st CV: 𝑎1,𝑃𝑇1,𝑃 + 𝑎1,𝐸𝑇1,𝐸 = 𝑏1 ⇒ 𝑎1,1𝑇1 + 𝑎1,2𝑇2 = 𝑏1

ith CV: 𝑎𝑖,𝑊𝑇𝑖,𝑊 + 𝑎𝑖,𝑃𝑇𝑖,𝑃 + 𝑎𝑖,𝐸𝑇𝑖,𝐸 = 𝑏𝑖 ⇒ 𝑎𝑖,𝑖−1𝑇𝑖−1 + 𝑎𝑖,𝑖𝑇𝑖 + 𝑎𝑖,𝑖+1𝑇𝑖+1 = 𝑏𝑖

𝑎𝑛,𝑊𝑇𝑛,𝑊 + 𝑎𝑛,𝑃𝑇𝑛,𝑃 = 𝑏𝑛 ⇒ 𝑎𝑛,𝑛−1𝑇𝑛−1 + 𝑎𝑛,𝑛𝑇𝑛 = 𝑏𝑛nth CV:

× =

A×T=B: linear algebraic system with n equations

A: tridiagonal n×n matrix, T,B: n×1 vectors 𝑎𝑖,𝑗

i identifies the CV  which the 

equation refers to
j identifies the j-th 

CV contribution

≠0 if j is

neighbor of i

=0 if j is not 

neighbor of i

For numerical stability, it is good if:

• Diagonal coefficients are positive

• Off-diagonal coefficients are negative
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The finite-volume method – 2D structured

CV are consecutively numbered from left to right 

and from top to bottom

𝜕

𝜕𝑥
𝜆

𝜕𝑇

𝜕𝑥
+

𝜕

𝜕𝑦
𝜆

𝜕𝑇

𝜕𝑦
+ 𝑆 𝑥, 𝑦, 𝑇 = 0

A 2D structured mesh

𝑎𝑁𝑇𝑁 + 𝑎𝑊𝑇𝑊 + 𝑎𝑃𝑇𝑃 + 𝑎𝐸𝑇𝐸 + 𝑎𝑠𝑇𝑆 = 𝑏

Finite-volume discretization (structured mesh):

Assembling the linear system

Quadrilateral mesh with nx×ny=n control volumes.

CV neighbor connectivity:

P     i,   E     i+1,   W     i-1,   N     i-nx,   S     i+nx

i,i+nxi,i+1

i,i-1

i,i-nx

0
0

0

0

0

0

0

0

0

0

0

A=

i,i

A×T=B: linear algebraic system with n eqs.

A: n×n matrix with 5 non-zero diagonals, 

T,B: n×1 vectors

ith CV: 𝑎𝑖,𝑖−𝑛𝑥
𝑇𝑖−𝑛𝑥

+ 𝑎𝑖,𝑖−1𝑇𝑖−1 + 𝑎𝑖,𝑖𝑇𝑖 + 𝑎𝑖,𝑖+1𝑇𝑖+1 + 𝑎𝑖,𝑖+𝑛𝑥
𝑇𝑖+𝑛𝑥

= 𝑏𝑖
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The finite-volume method – 3D structured

𝜕

𝜕𝑥
𝜆

𝜕𝑇

𝜕𝑥
+

𝜕

𝜕𝑦
𝜆

𝜕𝑇

𝜕𝑦
+

𝜕

𝜕𝑧
𝜆

𝜕𝑇

𝜕𝑧
+ 𝑆 𝑥, 𝑦, 𝑧, 𝑇 = 0

A 3D structured mesh

Consider a 3D domain with nx×ny×nz=n control volumes.

CV neighbor connectivity:   T     i-nx·ny,   B     i+nx·ny

𝑎𝑖,𝑖−𝑛𝑥∙𝑛𝑦
𝑇𝑖−𝑛𝑥∙𝑛𝑦

+ 𝑎𝑖,𝑖−𝑛𝑥
𝑇𝑖−𝑛𝑥

+ 𝑎𝑖,𝑖−1𝑇𝑖−1 + 𝑎𝑖,𝑖𝑇𝑖 + 𝑎𝑖,𝑖+1𝑇𝑖+1 + 𝑎𝑖,𝑖+𝑛𝑥
𝑇𝑖+𝑛𝑥

+ 𝑎𝑖,𝑖+𝑛𝑥∙𝑛𝑦
𝑇𝑖+𝑛𝑥∙𝑛𝑦

= 𝑏𝑖ith CV:

A×T=B: linear algebraic system with n 

equations

A: n×n matrix with 7 non-zero diagonals

T,B: n×1 vectors

A=

i,i+nxi,i+1

i,i-1

i,i-nx

0

0

0

0

0

0

i,i i,i+nx·ny

i,i-nx·ny

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Advantages in using a structured mesh:

• No need to store CV neighbour connectivity              less disk space

• Faster access to the matrix elements              the linear solver is faster

• Solvers specific for these matrix structures are more efficient than general purpose ones
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The finite-volume method – Unstructured mesh

∇ ∙ 𝜆∇𝑇 + 𝑆 𝒙, 𝑇 = 0

An unstructured mesh

75

76

24

121

68

67

99

75th CV: 𝑎75,24𝑇24 + 𝑎75,68𝑇68 + 𝑎75,75𝑇75 + 𝑎75,76𝑇76 +𝑎75,121 𝑇121 = 𝑏75

68th CV: 𝑎68,67𝑇67 + 𝑎68,68𝑇68 + 𝑎68,75𝑇75 + 𝑎68,99𝑇99 = 𝑏68

A: n×n sparse matrix; the 

blue dots in the figure indicate 

elements 𝑎𝑖,𝑗 ≠ 0.

Remember that:

𝑎𝑖,𝑗 ≠ 0 if 𝑇𝑖 depends (is 

neighbor of) on 𝑇𝑗

𝑎𝑖,𝑗 = 0 if 𝑇𝑖 does not depend 

(not a neighbor) on 𝑇𝑗.

https://uk.mathworks.com/help/matlab/math/sparse

-matrix-reordering.htmlNow:

• Easier to mesh complex domains, but…

• …need to store CV neighbour connectivity

• Slower linear solver

https://uk.mathworks.com/help/matlab/math/sparse-matrix-reordering.html
https://uk.mathworks.com/help/matlab/math/sparse-matrix-reordering.html
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How to judge solution accuracy?

✓ Is the solution bounded, for instance between the boundary values?

✓ Are the boundary conditions respected?

✓ Compare with theory/experiments (if available)

✓ Residual error: 

✓ Energy balance: at steady-state, if ҧ𝑆 = 0, for each cell 

𝑅 =
𝑩 − 𝑨 × 𝑻

𝑑𝑖𝑎𝑔 𝑨 × 𝑻
< 𝑡𝑜𝑙

𝑇𝑃 𝑇𝐸𝑇𝑊

𝑒𝑤
𝑞𝑒𝑞𝑤

𝑞𝑤 − 𝑞𝑒 = 0

𝑞𝑤 − 𝑞𝑒 = − 𝜆
𝑑𝑇

𝑑𝑥
𝑤

+ 𝜆
𝑑𝑇

𝑑𝑥
𝑒

= 0

−𝜆𝑤

𝑇𝑃 − 𝑇𝑊

𝛿𝑥𝑤
+ 𝜆𝑒

𝑇𝐸 − 𝑇𝑃

𝛿𝑥𝑒
= 0

Total error (rescaled): 𝑒𝑟𝑟𝑜𝑟 =
σ𝑖=1

𝑖=𝑛 𝑞𝑖,𝑤 − 𝑞𝑖,𝑒

𝑞𝑟𝑒𝑓

𝑞𝑟𝑒𝑓: arbitrary, e.g. 𝑞𝑟𝑒𝑓 = σ𝑖=1
𝑖=𝑛 𝑞𝑖,𝑤 , or 𝑞𝑟𝑒𝑓 = 𝜆 𝑇𝑏 − 𝑇𝑎 /𝐿
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Remember our starting point:

To express the derivatives, we discretised them using a 2nd-order scheme:

So that our discretization equation became:

How to judge solution accuracy?

✓ As you refine/coarsen the mesh, is the convergence order of the solution respected?

𝜆
𝑑𝑇

𝑑𝑥
𝑒

− 𝜆
𝑑𝑇

𝑑𝑥
𝑤

+ ҧ𝑆Δ𝑥 = 0

ቤ
𝑑𝑇

𝑑𝑥
𝑥𝑒

=
𝑇 𝑥𝐸 − 𝑇 𝑥𝑃

𝛿𝑥 𝑒
+ 𝑂 𝛿𝑥 𝑒

2𝑇𝑒
′′′ ቤ

𝑑𝑇

𝑑𝑥
𝑥𝑤

=
𝑇 𝑥𝑃 − 𝑇 𝑥𝑊

𝛿𝑥 𝑤
+ 𝑂 𝛿𝑥 𝑤

2 𝑇𝑤
′′′

𝑂 𝛿𝑥  
2𝑇′′′  does not actually appear in the discretisation equation, but is the intrinsic 

error of our numerical solution. As we refine the mesh and decrease 𝛿𝑥, the truncation 

error decreases and our solution converges to the exact solution. If the overall 

truncation error is 𝑂 𝛿𝑥  
2 , our solution is expected to converge to the exact solution 

with an order 2, i.e. if we halve the node spacing, the error should be 4 times smaller.

To verify this, we must know the exact solution. We need to test different values of 𝛿𝑥, 

and display a log-log plot of the error vs 𝛿𝑥. We will see this in Worked example 2.

𝜆𝑒

𝑇𝐸 − 𝑇𝑃

𝛿𝑥𝑒
− 𝜆𝑤

𝑇𝑃 − 𝑇𝑊

𝛿𝑥𝑤
+ ҧ𝑆Δ𝑥 + 𝑂 𝛿𝑥  

2𝑇′′′ = 0 𝑂 𝛿𝑥  
2𝑇′′′ : truncation error
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Numerical Methods – L1

What to take home from today’s lecture

➢ How to discretise the 1D steady-state heat conduction equation using FV

➢ How to estimate the order of accuracy of the solution based on the truncation error

of the discretisation schemes used

➢ How to derive the linear system of equations for the 1D problem

➢ How to impose Dirichlet or Neumann conditions

➢ How to assemble the system of linear equations

➢ How to judge the accuracy of the solution

➢ How to use Matlab to solve the linear system and obtain the solution
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Parameters:

• L=1 m

• n=21 equidistant nodes

• l=400 W/(m∙K)

• Ta=300 K, Tb=320 K

To solve the linear system, make use of matlab’s “backslash” operator: T=A\B, 

(https://uk.mathworks.com/help/matlab/ref/mldivide.html). 

Perform the solution accuracy tests suggested in the previous slides. The problem 

has the following analytical solution:

Worked example 1

Implement a FV code in Matlab to solve the 1D steady heat conduction problem:

with:

• l constant

• Zero source term, 𝑆 𝑥, 𝑇 = 0

Boundary conditions:

• T(x=0)=Ta

• T(x=L)=Tb

𝑇 𝑥 = 𝑇𝑎 +
𝑇𝑏 − 𝑇𝑎

𝐿
𝑥

𝑑

𝑑𝑥
𝜆

𝑑𝑇

𝑑𝑥
+ 𝑆 𝑥, 𝑇 = 0 

https://uk.mathworks.com/help/matlab/ref/mldivide.html
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Worked example 1

We should know now that solving the problem numerically 

means to solve the linear system A×T=B, so we need to 

generate the matrix A and vector B, then we will use 

Matlab’s functions to solve the system. 

Let’s start defining the geometry.

21 equidistant nodes give:

Whereas for the two boundary control volumes:

Next, we begin filling matrix A and vector B

𝛿𝑥 = ∆𝑥 =
𝐿

𝑛 − 1
=

1 𝑚

21 − 1
= 0.05 𝑚

∆𝑥𝐵 =
∆𝑥

2
= 0.025 𝑚

1 2 3 𝑛

𝛿𝑥

∆𝑥𝑇𝑎 𝑇𝑏

∆𝑥𝐵
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𝑇𝑎 𝑇𝑏

1st CV: 𝑎1,𝑃𝑇1,𝑃 + 𝑎1,𝐸𝑇1,𝐸 = 𝑏1 ⇒ 𝑎1,1𝑇1 + 𝑎1,2𝑇2 = 𝑏1

ith CV: 𝑎𝑖,𝑊𝑇𝑖,𝑊 + 𝑎𝑖,𝑃𝑇𝑖,𝑃 + 𝑎𝑖,𝐸𝑇𝑖,𝐸 = 𝑏𝑖 ⇒ 𝑎𝑖,𝑖−1𝑇𝑖−1 + 𝑎𝑖,𝑖𝑇𝑖 + 𝑎𝑖,𝑖+1𝑇𝑖+1 = 𝑏𝑖

𝑎𝑛,𝑊𝑇𝑛,𝑊 + 𝑎𝑛,𝑃𝑇𝑛,𝑃 = 𝑏𝑛 ⇒ 𝑎𝑛,𝑛−1𝑇𝑛−1 + 𝑎𝑛,𝑛𝑇𝑛 = 𝑏𝑛nth CV:

𝑎1,1 = 1, 𝑎1,2 = 0, 𝑏1 = 𝑇𝑎

𝑎𝑖,𝑖−1 = −
l

𝛿𝑥
, 𝑎𝑖,𝑖 =

2l

𝛿𝑥
, 𝑎𝑖,𝑖+1 = −

l

𝛿𝑥
, 𝑏𝑖 = 0

𝑎𝑛,𝑛−1 = 0, 𝑎𝑛,𝑛 = 1, 𝑏𝑛 = 𝑇𝑏

× =

Worked example 1

Continues in the notes…
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Worked example 2

Repeat Worked example 1, but now with a nonzero source term:

The associated ODE: 

has the following analytical solution:

𝑆𝐶 = 5000
𝑊

𝑚3 , 𝑆𝑃 = −100
𝑊

𝑚3𝐾

𝜆𝑇′′ + 𝑆𝐶 + 𝑆𝑃𝑇 = 0 

𝑇 𝑥 = 𝑐1𝑒𝜇1𝑥 + 𝑐2𝑒𝜇2𝑥 −
𝑆𝑐

𝑆𝑝

𝜇1,2 = ± −
𝑆𝑝

l

𝑐1 =

𝑇𝑏 −
𝑆𝑐
𝑆𝑝

+ 𝑇𝑎 𝑒𝜇2𝐿 +
𝑆𝑐
𝑆𝑝

𝑒𝜇1𝐿 − 𝑒𝜇2𝐿 𝑐2 = 𝑇𝑎 +
𝑆𝑐

𝑆𝑝
− 𝑐1

𝑎𝑖,𝑖 =
2l

𝛿𝑥
− 𝑆𝑝∆𝑥,  𝑏𝑖 = 𝑆𝑐∆𝑥,

The only difference with example 1 is that now:

Continues in the notes…
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Worked example 3

Parameters:

• L=1 m

• n=21 equidistant nodes

• l=400 W/(m∙K)

The problem has the following analytical solution:

Let’s now see the case of Neumann boundary conditions. Solve:

with:

• l constant

• Nonzero source term, 𝑆𝐶 = 50000 Τ𝑊 𝑚3 , 𝑆𝑃 = 0

Boundary conditions:

• qa=104 W/m2

• T(x=L)=Tb=320 K

𝑑

𝑑𝑥
𝜆

𝑑𝑇

𝑑𝑥
+ 𝑆 𝑥, 𝑇 = 0 

𝑇𝑏𝑞𝑎

𝑇 𝑥 = 𝑇𝑏 +
𝑞

𝜆
𝐿 − 𝑥 +

𝑆𝐶

2𝜆
𝐿2 − 𝑥2

Continues in the notes…
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