

Computer Modelling Techniques

Numerical Methods

Lecture 1: short intro & solution of 1D steady diffusion equation

Mirco Magnini

Module name	Computer Modelling Techniques MMME3086
Credits	20 (requires ~200 hrs study)
Year/Level	Level 3
Semester	Autumn Semester
Module Convenor	Dr Mirco Magnini
Teaching staff	Dr Mirco Magnini (Numerical Methods, NM) Dr Chris Bennett, Dr Luke Parry (Finite Element Analysis, FEA) Dr Donald Giddings (Computational Fluid Dynamics, CFD)

Educational	To provide students with a basic knowledge and				
Aims	understanding of the mainstream computer modelling				
	techniques used in modern engineering practice, including				
	Finite Element and Computational Fluid Dynamics methods.				

MMME3086 covers the whole simulation procedure and the most popular simulation software for CFD (fluids) and FEA (solid):

Dr. Mirco Magnini Numerical Methods: FV, fundamental aspects, <u>Matlab</u> Teaching weeks 1-3; NM coursework

Dr. Chris Bennett Finite Element Analysis: FE, solid mechanics, <u>Abaqus</u> Teaching weeks 4-7; FEA coursework

Dr. Don Giddings Computational Fluid Dynamics: FV, <u>ANSYS</u> Teaching weeks 8-11; CFD coursework

Coursework	Three marked coursework assignments:				
	NM coursework (30%)				
	FEA coursework (35%)				
	CFD coursework (35%)				
	The assignments do not require supervision.				
	Time required to complete each assignment: 6 hours approx				
	Submission doadling:				
	 Subilities of the second second				
	Educational objective:				
	To gain some practical experience of the				
	fundamentals of solving numerical problems and				
	running FEA and CFD engineering software codes				
	that are widely used in industry.				

University of

Lectures: Thursday, 11-13, Coates Road Auditorium.

Seminars: Friday, 09-11, Coates Road Auditorium. Bring your own laptop.

Teaching week	Section	w/b	Lecture topic (2h)	Seminar session (2h)	Coursework dates
1	NM	02 Oct	Steady diffusion equation	1D steady finite-volume in Matlab	
2	NM	09 Oct	Solution of linear systems, unsteady diffusion equation	Gauss-Seidel method in Matlab	
3	NM	16 Oct	Solution of nonlinear equations, numerical integration	1D unsteady finite-volume in Matlab	Mon 16 Oct: NM coursework release
4	FEA	23 Oct	1D FE, Stiffness Matrices	Stiffness Matrix Assembly, and Solution	
5	FEA	30 Oct	Truss/Pin-jointed FE	Abaqus: Geo, Mesh	Mon 30 Oct: NM coursework deadline
6	FEA	06 Nov	Continuum Elements, Plates and Shells	Abaqus: BCs, Loading, Solution, Post-processing	Thu 09 Nov: FEA coursework release
7	FEA	13 Nov	Practical Notes on FE	FEA coursework support	
8	CFD	20 Nov	Practical introduction to CFD and a commercial code	Model creation and mesh generation.	Thu 23 Nov: FEA coursework deadline
9	CFD	27 Nov	Derive the Navier Stokes equations of fluid motion in 3D for an incompressible, steady flow	Setting up the models in CFD solution and achieving converged solution in Fluent	Thu 30 Nov: CFD coursework release
10	CFD	04 Dec	Demonstrate how the finite volume numerical method works in a 1D case	Post solution processing of CFD model and CW support	
11	CFD	11 Dec	CFD overview and revision	-	Thu 14 Dec: CFD coursework deadline

- Teacher Mirco Magnini, <u>UoN-webpage</u>
- Office Coates B100a
- Email mirco.magnini@nottingham.ac.uk
- **Q&A** Forum in Moodle (NM)

Timetable

Teaching week	w/b	Lecture engagement (Thu, h11-13)	In-person seminar (Fri, h09-11)
1	02 Oct	L1: Steady 1D heat equation (2h)	Matlab: 1D steady finite-volume
2	09 Oct	L2: Solution of linear systems (1h), L3: Unsteady heat equation (1h)	Matlab: Gauss-Seidel method
3	16 Oct	L4: Solution of nonlinear equations (1h), L5: Numerical integration (1h)	Matlab: 1D unsteady finite-volume

Seminars – Coates Road Auditorium, bring your laptop!

NM Coursework – Released on Mon 16 Oct, deadline Mon 30 Oct

Scope of CMT – Part 1: Numerical Methods

- Learn how to discretise an ODE/PDE, L1
- Solve a discretised ODE/PDE, **seminar 1** (demo 1)
- Learn how to solve the resulting system of linear equations, L2
- Implement a solver for linear equations, seminar 2 (demo 2)
- Learn how to discretise unsteady PDEs, L3
- Solve an unsteady PDE, seminar 3 (demo 3)
- Learn how to solve nonlinear equations, L4
- Learn how to perform numerical integration, L5

Resources

University of

Slides/notes/demos on Moodle cover the entire material for NM.

Matlab is installed in all computer rooms and <u>Engineering Virtual Desktop</u>. To install it in your own machine, follow the instructions on <u>workspace</u>. Consider reviewing the MATLAB <u>Onramp</u> training if you are not familiar with the software.

Books – If you wish to know more, my notes are based on:

- Numerical Heat Transfer and Fluid Flow, S. V. Patankar, Hemisphere Publisher, 1980
 https://nusearch.nottingham.ac.uk/permalink/f/gq7rlv/44NOTUK_ALMA2172538080005561
- Numerical Recipes, W. H. Press et al., Cambridge University Press, 2007
 https://nusearch.nottingham.ac.uk/permalink/f/11rbvif/44NOTUK_ALMA21106504400005561
- Applied Numerical Methods with MATLAB for engineers and scientists, S. C. Chapra, McGraw-Hill 2012 <u>https://nusearch.nottingham.ac.uk/permalink/f/11rbvif/44NOTUK_ALMA21106792720005561</u>
- Numerical Analysis, R. L. Burden et al., Cengage Learning, 2016 (available online) <u>https://nusearch.nottingham.ac.uk/permalink/f/1m5tnd/44NOTUK_ALMA51125623900005561</u>
- An Introduction to Computational Fluid Dynamics, H. K. Versteeg et al., Pearson Prentice Hall, 2007 <u>https://nusearch.nottingham.ac.uk/permalink/f/1m5tnd/44NOTUK_ALMA2183048930005561</u>

N.B. If you Google any of these books, it should not be hard to find free online versions for download

This week's menu (2h lecture + 2h seminar)

> ODEs/PDEs

University of

- ID steady-state diffusion problems
- The finite-volume method in 1D
- The finite-volume method in 2D structured mesh
- ➤ The finite-volume method in 3D structured mesh
- The finite-volume method unstructured mesh
- Indicators of solution accuracy
- Seminar 1/demo 1: 1D steady FV method in Matlab (Worked examples 1,2&3)

Expected outcome: know how to discretise an ODE/PDE using the finitevolume method; use matlab to obtain the numerical solution; be able to use different tools to verify the accuracy of the solution. The aim of this and next lecture is to develop a *numerical method* for the *discrete solution* of *Partial Differential Equations (PDEs)*.

Ordinary Differential Equation (ODE): differential equation that contains one or more derivatives of an unknown function that depends on <u>only one variable</u>. It is linear if it is of the first degree in the unknown function and its derivatives, for example:

$$a_0(x)\phi + a_1(x)\frac{d\phi}{dx} + a_2(x)\frac{d^2\phi}{dx^2} + \dots + a_n(x)\frac{d^n\phi}{dx^n} + b(x) = 0$$

Partial Differential Equation (PDE): differential equation that contains one or more partial derivatives of an unknown function that depends on <u>at least two variables</u>. It is linear if it is of the first degree in the unknown function and its partial derivatives, for example:

$$A(x,y)\frac{\partial^2 \phi}{\partial x^2} + B(x,y)\frac{\partial^2 \phi}{\partial x \,\partial y} + C(x,y)\frac{\partial^2 \phi}{\partial y^2} + D(x,y,\phi) = 0$$

Nottingham UK I CHINA I MALAYSIA A PDE example: The heat equation

Why/where is it important? Thermal management enters many engineering problems, for

example in a racing car braking system

University of

Source: C. Cravero, D. Marsano, MDPI Energies 15 (2022) 2934. https://www.mdpi.com/1996-1073/15/8/2934 How is it derived? Let's see a 2D example.

Energy balance:

University of Nottingham

Temporal variation of internal energy content = Heat flux through boundaries + Internal generation

 $\frac{\partial (\rho c_p T)}{\partial t} dx \, dy =$

$$(q_x - q_{x+dx})dy + (q_y - q_{y+dy})dx + S(x, y, t, T) dx dy$$

$$q_{x+dx} = q_x + \frac{\partial q_x}{\partial x} dx, \qquad q_{y+dy} = q_y + \frac{\partial q_y}{\partial y} dy$$

$$\frac{\partial(\rho c_p T)}{\partial t} dx dy = -\frac{\partial q_x}{\partial x} dx dy - \frac{\partial q_y}{\partial y} dx dy + S(x, y, t, T) dx dy$$

Fourier law:
$$\boldsymbol{q} = -\lambda \nabla T = -\frac{\partial T}{\partial x} \hat{\boldsymbol{\iota}} - \frac{\partial T}{\partial y} \hat{\boldsymbol{j}}$$

$$\frac{\partial \left(\rho c_p T\right)}{\partial t} = \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x}\right) + \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y}\right) + S(x, y, t, T)$$

 ρ : density [kg/m³]; c_p : specific heat [J/(kg*K)]; λ : thermal conductivity [W/(m*K)]; q: heat flux [W/m²]; S: source term [W/m³]

1D steady-state heat equation

- 1D: the problem depends only on one spatial coordinate
- Steady-state: the problem is independent of time

The heat equation becomes an ODE.

University of Nottinaham

Describes

creation/destruction

Many transport processes in engineering can be described by this equation! More in the notes... Any solution method for this ODE will be applicable to different engineering problems!

The discretisation concept

Differential problem to be solved: 1D steady-state heat conduction

University of

Nottinaham

1

$$\frac{d}{dx}\left(\lambda\frac{dT}{dx}\right) + S(x,T) = 0, \quad 0 < x < L$$
$$T(x = 0) = T_a, \qquad T(x = L) = T_b$$

An analytical method seeks for the continuous T(x) satisfying the problem $\forall x \in [0, L]$ A numerical method seeks for an approximate solution T_1, \dots, T_n valid only at discrete locations x_1, \dots, x_n if we have *n* unknowns T_i , we need *n* equations! In general, we prefer to solve systems of algebraic linear equations of the kind:

$$\begin{cases} a_{1,1}T_1 + a_{1,2}T_2 + \dots + a_{1,i}T_i + \dots + a_{1,n}T_n = b_1 \\ \vdots \\ a_{n,1}T_1 + a_{n,2}T_2 + \dots + a_{n,i}T_i + \dots + a_{n,n}T_n = b_n \end{cases} \longrightarrow A \times T = B$$

Therefore, the specific numerical method adopted (FD,FV,FE,...) identifies:

- How to derive the discretization equation from the initial differential equation
- How to express derivatives as a function of the node values T_1, \ldots, T_n
- How to deal with nonlinear terms

University of Nottingham UK I CHINA I MALAYSIA The finite-volume method – 1D

From the differential to the discretized equation (internal nodes):

- 1. Discretisation of the domain into control volumes (CV)
- 2. Integration over the CV:

CV cross-section area

$$\int_{V} \frac{d}{dx} \left(\lambda \frac{dT}{dx} \right) dV + \int_{V} S(x, T) dV = 0, \qquad dV = Adx,$$
Average value of S
within the CV
$$\int_{W}^{e} \frac{d}{dx} \left(\lambda \frac{dT}{dx} \right) Adx + \int_{W}^{e} S(x, T) Adx = 0 \qquad \qquad \left[\lambda \frac{dT}{dx} \right]_{W}^{e} + \overline{S[x]}_{W}^{e} = 0$$

$$\left(\lambda \frac{dT}{dx}\right)_e - \left(\lambda \frac{dT}{dx}\right)_w + \bar{S}\Delta x = 0$$

How do we discretise the derivatives?

 $(\delta x)_w$

W

 $(\delta x)_e$

E

 $(\delta x)_{e}$

P

 Δx

We need an assumption for the behavior of T(x) between the CV-centres

University of Nottingham

Taylor expansion around generic x_i :

Higher-order profiles (e.g. quadratic) exist, but require more points

 x_e

Nottingham uk i china i malaysia The finite-volume method – 1D

$$\frac{d}{dx}\left(\lambda\frac{dT}{dx}\right) + S(x,T) = 0$$

University of

Approximation of derivatives and linearisation of source term:

$$a_W = -\frac{\lambda_W}{\delta x_W}$$
, $a_P = \frac{\lambda_W}{\delta x_W} + \frac{\lambda_e}{\delta x_e} - S_P \Delta x$, $a_E = -\frac{\lambda_e}{\delta x_e}$, $b = S_C \Delta x$

This was valid for all internal CVs, but what about boundary CVs?

Discretised equations for the boundary CVs - Dirichlet boundary conditions:

The temperature at the left boundary is known, for example we know that $T(x = 0) = T_a$. Then we can write

a "dummy" equation of the kind:

$$a_B T_B + a_I T_I = b$$
, $a_B = 1, a_I = 0, b = T_a$

Or, with our usual notation:

University of

$$\int_{1}^{1} \int_{2}^{1} \int_{i-1}^{1} \int_{i+1}^{1} \int_{i+1}^{1} \int_{i+1}^{1} \int_{n-1+n}^{1} \int_{n-1}^{1} \int_{n-1}^{1$$

Discretised equations for the boundary CVs - Neumann boundary conditions:

Instead of the temperature, at the left boundary we know the heat flux q_B . This sets a condition on the temperature gradient, because owing to the Fourier's law:

$$q = -\lambda \frac{dT}{dx}$$

Discretised equations for the boundary CVs - Neumann boundary conditions:

Instead of the temperature, at the left boundary we know the heat flux q_B . This sets a condition on the temperature gradient, because owing to the Fourier's law:

$$q = -\lambda \frac{dT}{dx}$$

University of

We derive a discretisation equation for CV_B by integrating the diffusion equation as done before:

$$\begin{array}{c} \mathbf{Q}_{\mathbf{B}} \\ \mathbf{Q}_{\mathbf{B}} \\ \mathbf{W} \\ \mathbf{H} \\ \mathbf{$$

19

01

Or, with our usual notation:

$$a_P T_P + a_E T_E = b$$
, $a_P = \frac{\lambda_e}{\delta x_e} - S_P \Delta x_B$, $a_E = -\frac{\lambda_e}{\delta x_e}$, $b = S_C \Delta x_B + q_B$

A×T=B: linear algebraic system with *n* equations A: tridiagonal $n \times n$ matrix, T,B: $n \times 1$ vectors

For **numerical stability**, it is good if:

University of Nottingham

CHINA | MALAYSIA

- Diagonal coefficients are **positive**
- Off-diagonal coefficients are <u>negative</u>

The finite-volume method – 2D structured

No need to know

20

University of

Nottingham

Finite-volume discretization (structured mesh):

$$a_N T_N + a_W T_W + a_P T_P + a_E T_E + a_S T_S = b$$

Assembling the linear system

Quadrilateral mesh with $n_x \times n_y = n$ control volumes.

CV neighbor connectivity:

$$P \rightarrow i$$
, $E \rightarrow i+1$, $W \rightarrow i-1$, $N \rightarrow i-n_x$, $S \rightarrow i+n_x$
 $i^{th} CV$: $a_{i,i-n_x}T_{i-n_x} + a_{i,i-1}T_{i-1} + a_{i,i}T_i + a_{i,i+1}T_{i+1} + a_{i,i+n_x}T_{i+n_x} = b_i$

A 2D structured mesh

CV are consecutively numbered from left to right and from top to bottom

A×T=B: linear algebraic system with n eqs. A: $n \times n$ matrix with 5 non-zero diagonals, T,B: $n \times 1$ vectors

The finite-volume method – 3D structured

$$\frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z} \right) + S(x, y, z, T) = 0$$

University of

Nottingham

Consider a 3D domain with $n_x \times n_y \times n_z = n$ control volumes.

CV neighbor connectivity: $T \rightarrow i - n_x \cdot n_y$, $B \rightarrow i + n_x \cdot n_y$

ith **CV**: $a_{i,i-n_x \cdot n_y} T_{i-n_x \cdot n_y} + a_{i,i-n_x} T_{i-n_x} + a_{i,i-1} T_{i-1} + a_{i,i} T_i + a_{i,i+1} T_{i+1} + a_{i,i+n_x} T_{i+n_x} + a_{i,i+n_x \cdot n_y} T_{i+n_x \cdot n_y} = b_i$

Advantages in using a structured mesh:

- No need to store CV neighbour connectivity less disk space
- Faster access to the matrix elements the linear solver is faster
- Solvers specific for these matrix structures are more efficient than general purpose ones 77

A×T=B: linear algebraic system with n equations A: $n \times n$ matrix with 7 non-zero diagonals T,B: $n \times 1$ vectors

The finite-volume method – Unstructured mesh

 $\nabla \cdot (\lambda \nabla T) + S(\mathbf{x}, T) = 0$

University of Nottingham

No need to know

An unstructured mesh

68th CV: $a_{68,67}T_{67} + a_{68,68}T_{68} + a_{68,75}T_{75} + a_{68,99}T_{99} = b_{68}$

75th CV: $a_{75,24}T_{24} + a_{75,68}T_{68} + a_{75,75}T_{75} + a_{75,76}T_{76} + a_{75,121}T_{121} = b_{75}$

A: $n \times n$ sparse matrix; the blue dots in the figure indicate elements $a_{i,j} \neq 0$. Remember that: $a_{i,j} \neq 0$ if T_i depends (is neighbor of) on T_j $a_{i,j} = 0$ if T_i does not depend (not a neighbor) on T_j .

Now:

- Easier to mesh complex domains, but...
- ...need to store CV neighbour connectivity
- Slower linear solver

https://uk.mathworks.com/help/matlab/math/sparse -matrix-reordering.html

How to judge solution accuracy?

- ✓ Is the solution bounded, for instance between the boundary values?
- ✓ Are the boundary conditions respected?
- ✓ Compare with theory/experiments (if available)

✓ Residual error:
$$R = \frac{|B - A \times T|}{|diag(A) \times T|} < tol$$

✓ Energy balance: at steady-state, if $\bar{S} = 0$, for each cell $q_w - q_e = 0$

✓ As you refine/coarsen the mesh, is the convergence order of the solution respected?

Remember our starting point:

University of

$$\left(\lambda \frac{dT}{dx}\right)_e - \left(\lambda \frac{dT}{dx}\right)_w + \bar{S}\Delta x = 0$$

To express the derivatives, we discretised them using a 2nd-order scheme:

$$\frac{dT}{dx}\Big|_{x_e} = \frac{T(x_E) - T(x_P)}{(\delta x)_e} + O[(\delta x)_e^2 T_e'''] \qquad \frac{dT}{dx}\Big|_{x_w} = \frac{T(x_P) - T(x_W)}{(\delta x)_w} + O[(\delta x)_w^2 T_w'']$$

So that our discretization equation became:

$$\lambda_e \frac{T_E - T_P}{\delta x_e} - \lambda_w \frac{T_P - T_W}{\delta x_w} + \bar{S}\Delta x + O[(\delta x)^2 T'''] = 0 \qquad O[(\delta x)^2 T''']: \text{ truncation error}$$

 $O[(\delta x)^2 T''']$ does not actually appear in the discretisation equation, but is the intrinsic error of our numerical solution. As we refine the mesh and decrease δx , the truncation error decreases and our solution converges to the exact solution. If the overall truncation error is $O[(\delta x)^2]$, our solution is expected to converge to the exact solution with an order 2, i.e. if we halve the node spacing, the error should be 4 times smaller. To verify this, we must know the exact solution. We need to test different values of δx , and display a log-log plot of the error vs δx . We will see this in Worked example 2.

What to take home from today's lecture

- ➢ How to discretise the 1D steady-state heat conduction equation using FV
- How to estimate the order of accuracy of the solution based on the truncation error of the discretisation schemes used
- How to derive the linear system of equations for the 1D problem
- How to impose Dirichlet or Neumann conditions
- ➢ How to assemble the system of linear equations
- ➢ How to judge the accuracy of the solution
- How to use Matlab to solve the linear system and obtain the solution

Implement a FV code in Matlab to solve the 1D steady heat conduction problem:

$$\frac{d}{dx}\left(\lambda\frac{dT}{dx}\right) + S(x,T) = 0$$

with:

• λ constant

University of

Nottingham

• Zero source term, S(x,T) = 0

Parameters:

- L=1 m
- n=21 equidistant nodes
- λ=400 Ŵ/(m·K)
- T_a=300 K, T_b=320 K

To solve the linear system, make use of matlab's "backslash" operator: T=A\B, (https://uk.mathworks.com/help/matlab/ref/mldivide.html).

Perform the solution accuracy tests suggested in the previous slides. The problem has the following analytical solution:

$$T(x) = T_a + \frac{T_b - T_a}{L}x$$

Boundary conditions:

Ta Tb

$$x=0$$
 $x=L$
 $+\longrightarrow x$

Worked example 1

We should know now that solving the problem numerically means to solve the linear system $A \times T=B$, so we need to generate the matrix **A** and vector **B**, then we will use Matlab's functions to solve the system.

- Let's start defining the geometry.
- 21 equidistant nodes give:

$$\delta x = \Delta x = \frac{L}{n-1} = \frac{1 m}{21-1} = 0.05 m$$

Whereas for the two boundary control volumes:

Next, we begin filling matrix **A** and vector **B**

$$\Delta x_B = \frac{\Delta x}{2} = 0.025 \ m$$

University of Nottingha

Worked example 1

University of Nottingham uk | china | malaysia

$$\begin{aligned}
\mathbf{1}^{\text{st}} \mathbf{CV}: \ a_{1,P}T_{1,P} + a_{1,E}T_{1,E} = b_{1} \Rightarrow a_{1,1}T_{1} + a_{1,2}T_{2} = b_{1} & = \underbrace{1 = 2 \cdots = 1}_{i=1}^{i} \underbrace{1 = 2 \cdots = 1}_{i=1,1}^{i} \underbrace{1 = 1}_{i=1}^{i} \underbrace{1 = 2 \cdots = 1}_{i=1,1}^{i} \underbrace{1 = 1}_{i=1}^{i} \underbrace{1 = 2 \cdots = 1}_{i=1,1}^{i} \underbrace{1 = 1}_{i=1}^{i} \underbrace{1 = 2 \cdots = 1}_{i=1,1}^{i} \underbrace{1 = 2 \cdots = 1}_{i=1,1}^{i} \underbrace{1 = 2 \cdots = 1}_{i=1,1}^{i} \underbrace{1 = 1}_{i=1}^{i} \underbrace{1 = 2 \cdots = 1}_{i=1,1}^{i} \underbrace{1 = 1}_{i=1}^{i} \underbrace{1 = 2 \cdots = 1}_{i=1,1}^{i} \underbrace{1 = 1}_{i=1}^{i} \underbrace{1 = 2 \cdots = 1}_{i=1,1}^{i} \underbrace{1 = 1}_{i=1}^{i} \underbrace{1 = 2 \cdots = 1}_{i=1,1}^{i} \underbrace{1 = 1}_{i=1}^{i} \underbrace{1 = 2 \cdots = 1}_{i=1,1}^{i} \underbrace{1 = 1}_{i=1}^{i} \underbrace{1 = 2 \cdots = 1}_{i=1,1}^{i} \underbrace{1 = 2 \cdots = 1$$

Continues in the notes...

Repeat Worked example 1, but now with a nonzero source term:

$$S_C = 5000 \ \frac{W}{m^3}, \qquad S_P = -100 \ \frac{W}{m^3 K}$$

University of

The associated ODE: $\lambda T'' + S_C + S_P T = 0$

has the following analytical solution:

$$T(x) = c_1 e^{\mu_1 x} + c_2 e^{\mu_2 x} - \frac{S_c}{S_p} \qquad \mu_{1,2} = \pm \sqrt{-\frac{S_p}{\lambda}}$$
$$c_1 = \frac{T_b - \left(\frac{S_c}{S_p} + T_a\right) e^{\mu_2 L} + \frac{S_c}{S_p}}{e^{\mu_1 L} - e^{\mu_2 L}} \qquad c_2 = T_a + \frac{S_c}{S_p} - c_1$$

The only difference with example 1 is that now:

$$a_{i,i} = \frac{2\lambda}{\delta x} - S_p \Delta x, \qquad b_i = S_c \Delta x,$$

Continues in the notes...

Let's now see the case of Neumann boundary conditions. Solve:

$$\frac{d}{dx}\left(\lambda\frac{dT}{dx}\right) + S(x,T) = 0$$

with:

 λ constant

University of Nottingham

Nonzero source term, $S_C = 50000 W/m^3$, $S_P = 0$ ٠

Parameters:

- L=1 m •
- n=21 equidistant nodes $T(x=L)=T_b=320$
- λ=400 W/(m·K) •

The problem has the following analytical solution:

$$T(x) = T_b + \frac{q}{\lambda}(L-x) + \frac{S_C}{2\lambda}(L^2 - x^2)$$

Continues in the notes...

$$\begin{array}{cccc}
 q_a & T_b \\
 \bullet & \bullet \\
 x=0 & \bullet \\
 + & \bullet \\
 x = L
\end{array}$$

Boundary conditions: