
1

Computer Modelling

Techniques

Mirco Magnini

Numerical Methods

Lecture 2: Solution of linear systems

2

Recap

1𝐷:
𝑑

𝑑𝑥
𝜆
𝑑𝑇

𝑑𝑥
+ 𝑆 𝑥, 𝑇 = 0

2𝐷:
𝜕

𝜕𝑥
𝜆
𝜕𝑇

𝜕𝑥
+

𝜕

𝜕𝑦
𝜆
𝜕𝑇

𝜕𝑦
+ 𝑆 𝑥, 𝑦, 𝑇 = 0

3𝐷:
𝜕

𝜕𝑥
𝜆
𝜕𝑇

𝜕𝑥
+

𝜕

𝜕𝑦
𝜆
𝜕𝑇

𝜕𝑦
+

𝜕

𝜕𝑧
𝜆
𝜕𝑇

𝜕𝑧
+ 𝑆 𝑥, 𝑦, 𝑧, 𝑇 = 0

Steady-state heat conduction:

𝑎𝑇𝑇𝑇 + 𝑎𝑁𝑇𝑁 + 𝑎𝑊𝑇𝑊 + 𝑎𝑃𝑇𝑃 + 𝑎𝐸𝑇𝐸 + 𝑎𝑆𝑇𝑆 + 𝑎𝐵𝑇𝐵 = 𝑏

1D 2D 3D
i,i+1

i,i-1
0

0

0

0

0

0

i,i

0

0

0

0

0

0

0

0

0

0

0

0

0

0

A=

A×T=B: linear algebraic system with n equations

A: n×n matrix; T,B: n×1 vectors

Matlab’s mldivide:
T=A\B

But how is a linear system solved

numerically?

i,i+nx

i,i-nx

i,i+nx·ny

i,i-nx·ny

FV

3

Numerical Methods – L2

Today’s menu

➢ Solution of a linear system

➢ System condition

➢ Direct methods (Gaussian elimination, TDMA)

➢ Iterative methods (Gauss-Seidel)

➢ Iterative methods: Solution relaxation

➢ Iterative methods: Convergence criteria

➢ Seminar 2, demo 2: implement the G-S and TDMA methods in Matlab

Expected outcome: know advantages/limitations of direct/iterative methods

to solve linear systems; be able to write down solution algorithms; use matlab

to solve linear systems.

4

Solution of the linear system

In general, the numerical solution of a partial differential equation on a computational mesh

with 𝑛 cells involves the solution of a system of 𝑛 linear equations, A×T=B, with 𝑛 unknowns

(𝑇1, … , 𝑇𝑛), where:

𝐴 =

𝑎1,1 ⋯ 𝑎1,𝑛
⋮ ⋱ ⋮

𝑎𝑛,1 ⋯ 𝑎𝑛,𝑛

𝑇 =
𝑇1
⋮
𝑇𝑛

𝐵 =
𝑏1
⋮
𝑏𝑛

Depending on the morphology or regularity of A, e.g. full, tridiagonal, band-diagonal, triangular,

symmetric, positive definite, etc. etc., there exist optimal solution algorithms.

Solution approaches can be grouped into:

• Direct methods: allow to compute the solution (𝑇1, … , 𝑇𝑛) within a finite number of operations.

• Iterative methods: are based on the sequential evaluation of approximate solutions that are

supposed to converge to the exact solution after ∞ iterations.

5

System condition

There are features of A that make it easier to solve the system, others that make it impossible.

• Well-conditioned system: a small change in one or more of the coefficients results in a

similar small change in the solution. This is the most desirable situation.

• Ill-conditioned systems: two or more equations of the system are very similar and small

changes in coefficients result in large changes in the solution. This is a dangerous situation.

Example:

• Singular systems: two or more equations are identical, so that det 𝑨 = 0. This way, we have

only n-1 independent equations, with n unknowns. The system is underdetermined, and

A×T=B cannot be solved.

Ill-conditioned system represent a problem for the calculation, in particular for direct methods.

1 2
1.1 2

𝑥1
𝑥2

=
10
10.4

𝑥1 = 4
𝑥2 = 3

1 2
1.05 2

𝑥1
𝑥2

=
10
10.4

𝑥1 = 8
𝑥2 = 1

BUT

Softwares (Matlab) choose the best solution algorithm depending on A

6

Direct methods – Gaussian elimination

The Gaussian elimination is a very robust algorithm based on the manipulation of A to turn it

into an upper triangular matrix, where (𝑇𝑛, … , 𝑇1) are then obtained by back-substitution.

Step 1. Forward elimination

𝑎1,1 𝑎1,2 𝑎1,3
𝑎2,1 𝑎2,2 𝑎2,3

… 𝑎1,𝑛
… 𝑎2,𝑛

⋮ ⋮ ⋮
𝑎𝑛,1 𝑎𝑛,2 𝑎𝑛,3

⋱ ⋮
… 𝑎𝑛,𝑛

×

𝑇1
𝑇2
⋮
𝑇𝑛

=

𝑏1
𝑏2
⋮
𝑏𝑛

1. Eliminate 𝑇1 from Eq. (i), with i=2,…,n, by subtracting Eq. (1)*ai,1/a1,1 from Eq. (i):

2. Eliminate 𝑇2 from Eq. (i), with i=3,…,n, by subtracting Eq. (2)*ai,2
(1)/a2,2

(1) from Eq. (i).

… and so on until, after N-1 operations, 𝑨(𝑁−1) is upper triangular

7

Direct methods – Gaussian elimination

… and so on until, after N-1 operations, 𝑨(𝑁−1) is upper triangular:

Step 2. Back substitution: solution of the new system 𝑨(𝑁−1) × 𝑻 = 𝑩(𝑁−1)

𝑳𝒊𝒏𝒆 𝒏: 𝑎𝑛,𝑛
(𝑁−1)

𝑇𝑛 = 𝑏𝑛
(𝑁−1)

⇒ 𝑇𝑛 =
𝑏𝑛
(𝑁−1)

𝑎𝑛,𝑛
(𝑁−1)

𝑳𝒊𝒏𝒆 𝒏 − 𝟏: 𝑎𝑛−1,𝑛−1
𝑁−1

𝑇𝑛−1 + 𝑎𝑛−1,𝑛
𝑁−1

𝑇𝑛 = 𝑏𝑛−1
(𝑁−1)

⇒ 𝑇𝑛−1 =
𝑏𝑛
(𝑁−1)

− 𝑎𝑛−1,𝑛
𝑁−1

𝑇𝑛

𝑎𝑛−1,𝑛−1
(𝑁−1)

𝑳𝒊𝒏𝒆 𝒊: 𝑇𝑖 =
𝑏𝑖
(𝑁−1)

− σ𝑘=𝑖+1
𝑛 𝑎𝑖,𝑘

𝑁−1
𝑇𝑘

𝑎𝑖,𝑖
(𝑁−1)

8

Direct methods – Gaussian elimination

Example: Consider the following system with 3 equations

2 1 −1
1 3 2
1 −1 4

𝑥1
𝑥2
𝑥3

=
1
13
11

From the 2nd and 3rd line, subtract the 1st line multiplied by 𝑎𝑖,1/𝑎1,1:

2 1 −1
0 2.5 2.5
0 −1.5 4.5

𝑥1
𝑥2
𝑥3

=
1

12.5
10.5

From the 3rd line, subtract the 2nd line multiplied by 𝑎3,2/𝑎2,2:

2 1 −1
0 2.5 2.5
0 0 6

𝑥1
𝑥2
𝑥3

=
1

12.5
18

𝑥3 = 3
𝑥2 = 2
𝑥1 = 1

Back substitution

9

Direct methods – Gaussian elimination

• The method is very reliable, it always calculates a solution (if a solution exists).

• The number of operations is proportional to n3.

• Because of the many operations to manipulate A, the method suffers from round-off errors,

i.e. the loss of significant figures as calculations are repeated on the same coefficient.

• Ill-conditioned systems pose significant problems. Small variations on the coefficients of A

due to round-off errors during the forward elimination procedure, may cause large changes

in the solution. Remedies: pivoting, i.e. rearrange rows/columns to have larger coefficients

along diagonals; scaling: rescale rows such that the largest coefficient is close to 1.

• The matrix of the coefficients A needs to be entirely stored even if there are many zeros,

requiring memory space proportional to n2.

• The algorithm is more complex to program than iterative methods.

10

Direct methods – TDMA algorithm

A Gaussian elimination method specific for tridiagonal matrices:

TDMA (TriDiagonal Matrix Algorithm)

𝑎𝑖𝑇𝑖 = 𝑏𝑖𝑇𝑖+1 + 𝑐𝑖𝑇𝑖−1 + 𝑑𝑖Node i)

𝑐1 = 0Node 1) 𝑏𝑛 = 0Node n)

Translation:

𝑎𝑖 → 𝑎𝑃,𝑖 → 𝑎𝑖,𝑖
𝑏𝑖 → −𝑎𝐸,𝑖 → −𝑎𝑖,𝑖+1
𝑐𝑖 → −𝑎𝑊,𝑖 → −𝑎𝑖,𝑖−1
𝑑𝑖 → 𝑏𝑖

in lecture 1

Forward elimination:

Node 1) 𝑎1𝑇1 = 𝑏1𝑇2 + 𝑑1 ⟹ 𝑇1 =
𝑏1𝑇2 + 𝑑1

𝑎1
= 𝑃1𝑇2 + 𝑄1

Node 2) 𝑎2𝑇2 = 𝑏2𝑇3 + 𝑐2 𝑃1𝑇2 + 𝑄1 + 𝑑2 ⟹ 𝑇2 =
𝑏2𝑇3 + 𝑐2𝑄1 + 𝑑2

𝑎2 − 𝑐2𝑃1
= 𝑃2𝑇3 + 𝑄2

Node n) 𝑇𝑛 = 𝑄𝑛 , 𝑄𝑛 =
𝑐𝑛𝑄𝑛−1 + 𝑑𝑛
𝑎𝑛 − 𝑐𝑛𝑃𝑛−1

Back substitution:

𝑇𝑛−1 = 𝑃𝑛−1𝑇𝑛 + 𝑄𝑛 ⟹ 𝑇𝑛−1

𝑇𝑛 = 𝑄𝑛

Node i) 𝑎𝑖𝑇𝑖 = 𝑏𝑖𝑇𝑖+1 + 𝑐𝑖𝑇𝑖−1 + 𝑑𝑖 ⟹ 𝑇𝑖 = 𝑃𝑖𝑇𝑖+1 + 𝑄𝑖 , 𝑃𝑖 =
𝑏𝑖

𝑎𝑖 − 𝑐𝑖𝑃𝑖−1
, 𝑄𝑖 =

𝑐𝑖𝑄𝑖−1 + 𝑑𝑖
𝑎𝑖 − 𝑐𝑖𝑃𝑖−1

𝑇𝑖 = 𝑃𝑖𝑇𝑖+1 + 𝑄𝑖 ⟹ 𝑇𝑖

𝑇1 = 𝑃1𝑇2 + 𝑄1 ⟹ 𝑇1

11

Iterative methods

Iterative methods start with an initial guess for the solution and use the algebraic equations to

systematically improve it, until the solution is sufficiently close to the exact solution of the system.

After m iterations we have an approximate solution 𝑻(𝑚): 𝑨 × 𝑻(𝑚) = 𝑩 − 𝒓(𝑚)

where 𝒓 is the residual vector, and the error vector 𝒆(𝑚) = 𝑻 − 𝑻(𝑚)

The iterative procedure is successful if lim
𝑚→∞

𝒆(𝑚) = 0, so that lim
𝑚→∞

𝒓(𝑚) = 0

In general:

• Number of operations for each iteration is proportional to n, but the number of iterations m is

not known beforehand.

• Convergence is not guaranteed (will see).

• There is no need to store the entire A but only the nonzero elements, memory ~n.

• For non-linear problems with a large and sparse matrix (typical CFD case), they are

preferable to direct methods because less computationally expensive.

• They are less sensitive to round-off errors than direct methods.

• They are much easier to code.

𝑨 × 𝑻 = 𝑩, if 𝑻 is the exact solution

12

Iterative methods – Point-iterative methods

At each mth iteration, equations are sequentially solved from 1st to nth using guess values for the

non-ith unknowns of each ith equation:

𝑎𝑖,1𝑇1 +⋯+ 𝑎𝑖,𝑖𝑇𝑖 +⋯+ 𝑎𝑖,𝑛𝑇𝑛 = 𝑏𝑖 ⇒ 𝑇𝑖 =
𝑏𝑖
𝑎𝑖,𝑖

− ෍

𝑗=1,𝑗≠𝑖

𝑛
𝑎𝑖,𝑗

𝑎𝑖,𝑖
𝑇𝑗
∗ , 𝑇𝑗

∗: guess values

Gauss-Seidel method: guess are the most recently available values: 𝑇𝑗
∗ = ቐ

𝑇𝑗
(𝑚−1)

, 𝑖𝑓 𝑗 > 𝑖

𝑇𝑗
𝑚
, 𝑖𝑓 𝑗 < 𝑖

𝑇𝑖
(𝑚)

=
𝑏𝑖
𝑎𝑖,𝑖

−෍

𝑗=1

𝑖−1
𝑎𝑖,𝑗

𝑎𝑖,𝑖
𝑇𝑗
(𝑚)

− ෍

𝑗=𝑖+1

𝑛
𝑎𝑖,𝑗

𝑎𝑖,𝑖
𝑇𝑗
(𝑚−1)

𝑇1 = 0.4𝑇2 + 0.2

𝑇2 = 𝑇1 + 1

n 0 1 2 3 4 5 6 7

T1 0 0.2 0.68 0.872 0.949 0.98 0.992 0.997

T2 0 1.2 1.68 1.872 1.949 1.98 1.992 1.997

7 iterations

Accuracy to the 2nd decimal
Example:

Exact solution: 𝑇1 = 1, 𝑇2 = 2

13

Iterative methods – Point-iterative methods

Gauss-Seidel method: guess are the most recently available values: 𝑇𝑗
∗ = ቐ

𝑇𝑗
(𝑚−1)

, 𝑖𝑓 𝑗 > 𝑖

𝑇𝑗
𝑚
, 𝑖𝑓 𝑗 < 𝑖

𝑇𝑖
(𝑚)

=
𝑏𝑖
𝑎𝑖,𝑖

−෍

𝑗=1

𝑖−1
𝑎𝑖,𝑗

𝑎𝑖,𝑖
𝑇𝑗
(𝑚)

− ෍

𝑗=𝑖+1

𝑛
𝑎𝑖,𝑗

𝑎𝑖,𝑖
𝑇𝑗
(𝑚−1)

𝑇1 = 0.4𝑇2 + 0.2

𝑇2 = 𝑇1 + 1

n 0 1 2 3 4 5 6 7

T1 0 0.2 0.68 0.872 0.949 0.98 0.992 0.997

T2 0 1.2 1.68 1.872 1.949 1.98 1.992 1.997

Accuracy to the 2nd decimal
Example:

But convergence depends on the form of the coefficient matrix. Rearranging the equations:

n 0 1 2 3 4 5 … ∞

T1 0 -1 -4 -11.5 -30.25 -77.13 … divergence

T2 0 -3 -10.5 -29.25 -76.13 -193.32 … divergence

𝑇1 = 𝑇2 − 1

𝑇2 = 2.5𝑇1 − 0.5

Scarborough criterion: a sufficient condition for the convergence of Gauss-Seidel is

𝑨 must be diagonally dominant
σ𝑗=1,𝑗≠𝑖
𝑛 𝑎𝑖,𝑗

𝑎𝑖,𝑖
ቊ
≤ 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠
< 1 𝑓𝑜𝑟 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 1 𝑒𝑞.

14

Iterative methods – Solution relaxation

Relaxation techniques: control of the rate of change of the variables in point-iterative

methods:

• w>1 over-relaxation: it speeds-up the otherwise slow convergence rate of iterative

methods (never above 2)

• w<1 under-relaxation: it slows down changes thus stabilizing the iterative

procedure, sometimes necessary for nonlinear equations

The best w which guarantees convergence with a minimum number of iterations is problem-

dependent and it is not known beforehand!

𝑇𝑖
(𝑚)

=
𝑏𝑖
𝑎𝑖,𝑖

− ෍

𝑗=1,𝑗≠𝑖

𝑛
𝑎𝑖,𝑗

𝑎𝑖,𝑖
𝑇𝑗
∗ = 𝑇𝑖

𝑚−1
+

𝑏𝑖
𝑎𝑖,𝑖

−෍

𝑗=1

𝑛
𝑎𝑖,𝑗

𝑎𝑖,𝑖
𝑇𝑗
∗

old

guess calculated rate of

change

new

guess

𝑇𝑖
(𝑚)

= 𝑇𝑖
(𝑚−1)

+ 𝜔
𝑏𝑖
𝑎𝑖,𝑖

−෍

𝑗=1

𝑛
𝑎𝑖,𝑗

𝑎𝑖,𝑖
𝑇𝑗
∗

15

Iterative methods – Convergence criteria

When is the iterative procedure for solution arrested?

Note: exact solution 𝑻 is not known beforehand.

• Absolute iteration error

• Scaled iteration error

• Absolute residuals

• Scaled residuals

• Scaled residuals (alternative)

𝜹(𝑚) = 𝑻(𝑚) − 𝑻(𝑚−1) < 𝑡𝑜𝑙

𝜹(𝑚)

𝑻(𝑚−1)
< 𝑡𝑜𝑙

𝒓(𝑚) = 𝑩 − 𝑨 × 𝑻(𝑚) < 𝑡𝑜𝑙

𝒓(𝑚)

𝑑𝑖𝑎𝑔 𝑨 ∙ 𝑻(𝑚)
< 𝑡𝑜𝑙

𝒓(𝑚)

𝒓(1)
< 𝑡𝑜𝑙

Gives the rate of solution change,

but no indication if we are

converging to the correct solution

Rescales the iteration error to make it nondimensional,

i.e. independent of the scale of the problem

Indicates how far are we from an exact

solution of the linear system

Rescales the residual error to make it nondimensional,

i.e. independent of the scale of the problem

Rescales the residual error with the error after the 1st

iteration, i.e. it indicates how much has the solution

improved since the beginning of the iterative process

16

Direct vs iterative methods

17

Numerical Methods – L2

What to take home from today’s lecture

➢ Advantages/limits of direct/indirect methods to solve linear system

➢ Solution algorithm based on the Gaussian elimination

➢ Solution algorithm based on the Gauss-Seidel method

➢ Sufficient condition for G-S convergence (Scarborough criterion)

➢ How to under/over-relax the G-S solution

➢ Convergence criteria for iterative methods

➢ How to use Matlab to implement the G-S method

18

Consider the finite-volume code to implement 1D steady-state

heat conduction of We2 of L1. Instead of using matlab’s

backslash operator to solve the linear system, implement the

iterative Gauss-Seidel method as a function. Use 10000 max

iterations; tolerance 1e-12; initial guess T= Ta everywhere.

Worked example 1

[output1,output2,…]=functionName(input1,input2,…);Matlab function syntax:

Steps of the algorithm:

1. Receive initial guess, A and B, max number of iterations and tolerance as input.

2. Start a loop where equations are solved in sequence from i=1 to n.

3. Update the value of the residuals.

4. If residuals are above the tolerance, update guess values and go back to step 2.

5. Once tolerance is met, arrest the procedure and return the solution vector T.

Continues in the notes…

19

Repeat We1, implementing the TDMA.

Worked example 2

Steps of the algorithm:

1. Receive A and B.

2. Calculate 𝑃1 and 𝑄1.

3. Calculate all the other 𝑃𝑖 and 𝑄𝑖 in ascending order (i=2,…,n-1).

4. Calculate 𝑄𝑛 and set 𝑇𝑛= 𝑄𝑛 .

5. Calculate all the other 𝑇𝑖 in descending order (i=n-1,…,1).

Continues in the notes…

	Default Section
	Slide 1: Computer Modelling Techniques
	Slide 2: Recap
	Slide 3: Numerical Methods – L2
	Slide 4: Solution of the linear system
	Slide 5: System condition
	Slide 6: Direct methods – Gaussian elimination
	Slide 7: Direct methods – Gaussian elimination
	Slide 8: Direct methods – Gaussian elimination
	Slide 9: Direct methods – Gaussian elimination
	Slide 10: Direct methods – TDMA algorithm
	Slide 11: Iterative methods
	Slide 12: Iterative methods – Point-iterative methods
	Slide 13: Iterative methods – Point-iterative methods
	Slide 14: Iterative methods – Solution relaxation
	Slide 15: Iterative methods – Convergence criteria
	Slide 16: Direct vs iterative methods
	Slide 17: Numerical Methods – L2
	Slide 18: Worked example 1
	Slide 19: Worked example 2

