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Steady-state diffusion equation, for example heat conduction:
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AxT=B: linear algebraic system with n equations
A: nxn tridiagonal matrix; T,B: nx1 vectors

- _ Steady-state: we solve
T=A\B the system only once

And what about unsteady equations?
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Numerical Methods - L4

Today’s menu

» Finite-volume method for unsteady PDE
» Explicit time-scheme

» Crank-Nicolson time-scheme

» Fully-implicit time-scheme

» Seminar 3 — solution of 1D unsteady heat equation with Matlab (demo 3)

Expected outcome: know the principles of time-marching algorithms for the

solution of unsteady PDEs; know and be able to implement implicit/explicit

time-schemes:; use matlab to obtain the numerical solution.
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The unsteady diffusion equation involves a first-order time-derivative, e.g. 1D unsteady heat

conduction:
a(pcpT) 0 aT
= T
5t " ox\tax) tSetD)

When the time-derivative is first-order, the equation has a parabolic behavior with time:
disturbances travel only towards the +t direction, and not backward (—t).

Only one temporal boundary condition is required: the initial condition T(x,t = 0).

The solution in time is obtained by time-marching: the solution at any time t + At is found by
advancing the solution from time t, no need to know what happens at times t > t + At.
Solution procedure:

t = 0: we need a known initial condition, T(x,t = 0)

t = 1At: discretisation of the equation — linear system —> solution —> T(x,t = 1At)

t = 2At: T(x,t = 1At) is our new initial condition — linear system — solution — T (x, t = 2At)
t = tfinal: T(x,t= tfinal)

mmmm—) At every time step, we need to solve a new linear system a
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Equation to be solved:
1D unsteady heat conduction (here with S(x,t) = 0)

a(pc,T) a (. 9T W ' P ' E
—_ A 1 :
ot ox \ Ox W e
| Az |
Integration in space and time (p,c, constant):
t+At t+At
oT d (_ adT
PCp j jEdth = J Ja Aax dVdt
t % t %

Discretisation of the single terms:

t+At e

t+At
PCp f f—dth = pcy j l —dt Adx = pc, (T} —TP)AAx  TP: Tpattimet, T: Tp at time t+t

t+At a t+At e a T t+At T T T T

_ E_'p p— 1w
j j 6x< >dth— J J ax( )Adx dt = j [Ae Sr | Adt
t |74 t w t

Now, integration in time requires a profile assumption for T(t) between t and t+4t
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Now, integration in time requires a profile assumption for T(t) between t and t+t.

The integral will be a function of T7 and TA. Easiest solution: a linear profile!

t+At A

f Tpdt = [fTI} + (1 - f)TIQ]At T3l implicit: f=1
t

« f=0 —— explicit scheme: 15t order accurate,

conditionally stable TO L

« f=1 —— fully-implicit scheme: 15t order accurate,

unconditionally stable

« f=1/2 —— Crank-Nicolson scheme: 2" order accurate, conditionally stable

¥

Tl_Tl Tl_Tl TO_TO TO_ 0
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I' eingion The unsteady finite-volume method — 1D

(superscript 1 is here dropped) (62)w (0z)e
m)w I(ﬁrlm+| () (6r)p+)|

—f/l—WTW+[pc g+f(/1—w+£>]Tp—f/1—eTE= w : P : ;
5,y P At Sx,, Ox, 5x, wo eI
=pcp2—fT£+<1—f)[£C—WWTv°V+;—;eT£—<£C—WW+;—;e>T£] “W=‘f£c—ww aE=‘faL£
Final linear equation wooTTe
) (a,, Ty +apTp +agTy =b b =pcpi—)tcT,9 +(1—f) l;ciwrvg+;;e T2 — (;C—WW+;;E)T,91

Assembling the system and advancing the solution in time

r N r A

\ 0 . | | |
O\aw\apaE o |x| T =] AxT=B: linear algebraic system with n equations
0 N

\ A: tridiagonal nxn matrix, T,B: nx1 vectors

The system is solved for t=A4t, 24t, 34¢, ..., till t,4

-

~ < ~ J

When t=4t: T in vector B is the initial condition

When t>4t: T? in vector B is the solution at the previous time instant 7
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Explicit time-scheme

Can be derived from the previous equations by setting f = 0:

j Tpdt = TP At

t

t+At 71|

implicit: f=1

explicit: f=0

>

Ax
Coefficients: ap = pcy ., ag =0, ay =0
. Ae Y Ax
b=—T3+—T2 —— T
5x, W ox, <5xw T ox, P ) P

|
|
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t+

At

Stability condition: coefficient for T2 when at LHS must be negative (remember L1, slide 15)

Aw Ao Ax
—) (m + 5_Xe PCp E) <0
pc, (Ax)?
Example: 4,, = 4., 8x,, = 6x, = Ax — At < —

o Aty (Ax)?: if we refine the grid we must exponentially decrease the time step!

« Equations for each CV are decoupled — no need to solve a system of equations

» It's a 1st-order scheme, so accuracy is still limited

Note: LHS means left-hand side of discretization equation
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Can be derived from the previous equations by setting f = 1/2: A
t+At 1] Imp|IC|t f=1 R
TE + T3 7
Tpdt = ———At
2
t
Ax 1(A, A,
P—P%A—ﬁz(a%ﬂ Tt
12 12 >
4E = 206x, Gw = 2 6x,,
A Ax
T < — 9
[6xw w 5 B, T <5xw+5xe 2PCpy >TP]
¢, (Ax)?
Stability condition: |At < P p(l )

» Stability condition still severe; larger At are still possible, but may give rise to oscillations
- 2"d-order accurate in time: if the time step is small (stable), it is the most accurate scheme

* Requires solution of a linear system, thus more complicated then time-explicit



Fully-implicit time-scheme
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Can be derived from the previous equations by setting f = 1:
implicit: f=1

t+At
j Tpdt = TpAt

t

Ax A, A, 0
aP_pCpAt+5xW+5xe Tey
>
Ae Aw Ax
—_re = -2 b = pc Tp
aE 6xe ) aW 6xwt ,D 14 A P
- " Ax
Stability condition: _'DCPE <0 — Always respected!

« The fully-implicit time scheme is stable for any size of time step

* It's a 1st-order scheme, so accuracy is still limited
» Requires solution of a linear system, thus more complicated then time-explicit
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What to take home from today’s lecture

» How to discretise the 1D unsteady heat conduction equation using FV

» Advantages/limits of explicit, fully-implicit and Crank-Nicolson schemes

» How to derive the condition for the numerical stability of the time-marching
algorithm

» How to use Matlab to solve unsteady problems
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Implement a FV code in Matlab to solve a 1D unsteady heat conduction problem,

using the fully-implicit method.

Tw Tw
Parameters: oo T&xt=0)=T0 _°;
e L=Im "—"X
« n=21 equidistant nodes
» A=400 W/(m-K), p=4000 kg/m?3, c¢,=400 J/(kg - K) o
* T(x=0)=T(x=L)=T,=300 K e
' at x=L/2

« Initial condition T(x,t=0)=T,=320 K Za10| §

* Time-step size At=100 s 305

b E n d tl m e Of S I m U I a.tl O n te nd = 5 O O O S 300 B T
0 1000 2000 3000 4000 5000

t[s]

Compare your results with the following analytical solution:

T(.'Xf, t) = TW + _aliizt Sin(uix) U =—,a = —

2(Ty = T) o [1 = (=1)]
T ; [ €
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There will be t,,,,/At=5000/100=50 time-steps. Tw Tw

At every k-th time-step: X;0 T(x,t=0)=TO0 X;L

1steV: a1 pThp +areTip =b1 = a11Th +a1,T, = by —>x
‘ al,l = 1, al‘z = 0, bl =T,

i CV: al,WTl,W + al,PTl,P + al,ETl,E - bl = al,l—lTl—l + al lTl + al,l+1Tl+1 - bl

A Ax A
m— -1 =—f50 @i =Pt f— Apiv1 = —f 5=
Ax 7\, A 2\
bi = pcp - Tt + (1 - N5 11+5 T< —aTi"‘l

N CV: apwTnw + anpTnp = bn = Apn-1Tn-1 + aunTn = by

) ,, 1 =0, Ann =1, b, =T,

The system is solved for t=4t, 24¢, ..., kat, ..., till t,.q
When t=4t: T*=1in b; is the initial condition

When t>4t: T*=1in b; is the solution at the previous time instant
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