

Computer Modelling Techniques

Numerical Methods Lecture 4: Solution of 1D unsteady diffusion equation

Mirco Magnini

1D:
$$\frac{d}{dx}\left(\lambda\frac{dT}{dx}\right) + S(x,T) = 0$$

Recap

University of <u>Nottingham</u>

$$\stackrel{\mathsf{FV}}{\longrightarrow} a_W T_W + a_P T_P + a_E T_E = b$$

$$a_W = -\frac{\lambda_W}{\delta x_W}$$
, $a_P = \frac{\lambda_W}{\delta x_W} + \frac{\lambda_e}{\delta x_e} - S_P \Delta x$, $a_E = -\frac{\lambda_e}{\delta x_e}$, $b = S_C \Delta x$

A×T=B: linear algebraic system with n equations A: $n \times n$ tridiagonal matrix; T,B: $n \times 1$ vectors

Steady-state: we solve the system only once

And what about unsteady equations?

Today's menu

- Finite-volume method for unsteady PDE
- Explicit time-scheme
- Crank-Nicolson time-scheme
- Fully-implicit time-scheme
- Seminar 3 solution of 1D unsteady heat equation with Matlab (demo 3)

Expected outcome: know the principles of time-marching algorithms for the

solution of unsteady PDEs; know and be able to implement implicit/explicit

time-schemes; use matlab to obtain the numerical solution.

The temporal discretisation concept

The unsteady diffusion equation involves a first-order time-derivative, e.g. 1D unsteady heat conduction:

$$\frac{\partial (\rho c_p T)}{\partial t} = \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) + S(x, t, T)$$

University of

When the time-derivative is first-order, the equation has a **parabolic behavior** with time:

disturbances travel only towards the +t direction, and not backward (-t).

Only one temporal boundary condition is required: the **initial condition** T(x, t = 0).

The solution in time is obtained by **time-marching**: the solution at any time $t + \Delta t$ is found by advancing the solution from time t, no need to know what happens at times $t > t + \Delta t$. **Solution procedure:**

$$t = 0$$
: we need a known **initial condition**, $T(x, t = 0)$
 $t = 1\Delta t$: discretisation of the equation \longrightarrow linear system \longrightarrow solution $\longrightarrow T(x, t = 1\Delta t)$
 $t = 2\Delta t$: $T(x, t = 1\Delta t)$ is our new initial condition \longrightarrow linear system \longrightarrow solution $\longrightarrow T(x, t = 2\Delta t)$
 $t = t_{final}$: $T(x, t = t_{final})$

At every time step, we need to solve a new linear system

The unsteady finite-volume method – 1D

Equation to be solved: 1D unsteady heat conduction (here with S(x, t) = 0)

$$\frac{\partial \left(\rho c_p T\right)}{\partial t} = \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x}\right)$$

University of

Integration in space and time (ρ ,c_p constant):

$$\rho c_p \int_{t}^{t+\Delta t} \int_{V} \frac{\partial T}{\partial t} dV dt = \int_{t}^{t+\Delta t} \int_{V} \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x}\right) dV dt$$

Discretisation of the single terms:

 $\rho c_p \int_{t}^{t+\Delta t} \int_{V} \frac{\partial T}{\partial t} dV dt = \rho c_p \int_{w}^{e} \left[\int_{t}^{t+\Delta t} \frac{\partial T}{\partial t} dt \right] A dx = \rho c_p (T_P^1 - T_P^0) A \Delta x \qquad T_P^0: T_P \text{ at time } t, T_P^1: T_P \text{ at time } t+\Delta t$

$$\int_{t}^{t+\Delta t} \int_{V} \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) dV dt = \int_{t}^{t+\Delta t} \int_{w}^{e} \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) A dx dt = \int_{t}^{t+\Delta t} \left[\lambda_{e} \frac{T_{E} - T_{P}}{\delta x_{e}} - \lambda_{w} \frac{T_{P} - T_{W}}{\delta x_{w}} \right] A dt$$

Now, integration in time requires a **profile assumption** for T(t) between t and $t+\Delta t$

Nottingham uk I CHINA I MALAYSIA The unsteady finite-volume method – 1D

Now, integration in time requires a **profile assumption** for T(t) between t and $t+\Delta t$. The integral will be a function of T_P^0 and T_P^1 . Easiest solution: a linear profile!

 $\int_{t}^{t+\Delta t} T_P dt = [fT_P^1 + (1-f)T_P^0]\Delta t$

University of

- *f=0* explicit scheme: 1st order accurate, conditionally stable
- *f=1 fully-implicit scheme*: 1st order accurate, unconditionally stable
- $f=1/2 \longrightarrow Crank-Nicolson scheme$: 2nd order accurate, conditionally stable

$$\rho c_p (T_P^1 - T_P^0) \Delta x = \left\{ f \left[\lambda_e \frac{T_E^1 - T_P^1}{\delta x_e} - \lambda_w \frac{T_P^1 - T_W^1}{\delta x_w} \right] + (1 - f) \left[\lambda_e \frac{T_E^0 - T_P^0}{\delta x_e} - \lambda_w \frac{T_P^0 - T_W^0}{\delta x_w} \right] \right\} \Delta t$$

6

The unsteady finite-volume method – 1D

Assembling the system and advancing the solution in time

$$\begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & a_W & a_P & a_E & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \times \begin{bmatrix} T_P \\ T_P \end{bmatrix} = \begin{bmatrix} b \\ b \end{bmatrix}$$

University o

A×T=B: linear algebraic system with n equations A: tridiagonal $n \times n$ matrix, T,B: $n \times 1$ vectors

The system is solved for $t=\Delta t$, $2\Delta t$, $3\Delta t$, ..., till t_{end}

When $t = \Delta t$. T^0 in vector **B** is the initial condition

When $t > \Delta t$. T^0 in vector **B** is the solution at the previous time instant

Explicit time-scheme

Can be derived from the previous equations by setting f = 0:

$$\int_{t}^{t+\Delta t} T_P dt = T_P^0 \Delta t$$

University of

Coefficients: $a_P = \rho c_p \frac{\Delta x}{\Delta t}$, $a_E = 0$, $a_W = 0$

$$b = \frac{\lambda_w}{\delta x_w} T_W^0 + \frac{\lambda_e}{\delta x_e} T_E^0 - \left(\frac{\lambda_w}{\delta x_w} + \frac{\lambda_e}{\delta x_e} - \rho c_p \frac{\Delta x}{\Delta t}\right) T_P^0$$

Stability condition: coefficient for T_P^0 when at LHS must be negative (remember L1, slide 15)

- $\Delta t_{max} \propto (\Delta x)^2$: if we refine the grid we must **exponentially** decrease the time step!
- Equations for each CV are decoupled no need to solve a system of equations
- It's a 1st-order scheme, so accuracy is still limited

Note: LHS means left-hand side of discretization equation

Crank-Nicolson time-scheme

Can be derived from the previous equations by setting f = 1/2:

$$\int_{t}^{t+\Delta t} T_P dt = \frac{T_P^1 + T_P^0}{2} \Delta t$$

University of

Nottinaham

$$a_{P} = \rho c_{p} \frac{\Delta x}{\Delta t} + \frac{1}{2} \left(\frac{\lambda_{w}}{\delta x_{w}} + \frac{\lambda_{e}}{\delta x_{e}} \right)$$
$$a_{E} = -\frac{1}{2} \frac{\lambda_{e}}{\delta x_{w}}, \qquad a_{W} = -\frac{1}{2} \frac{\lambda_{w}}{\delta x_{w}}$$

$$b = \frac{1}{2} \left[\frac{\lambda_w}{\delta x_w} T_W^0 + \frac{\lambda_e}{\delta x_e} T_E^0 - \left(\frac{\lambda_w}{\delta x_w} + \frac{\lambda_e}{\delta x_e} - 2\rho c_p \frac{\Delta x}{\Delta t} \right) T_P^0 \right]$$

Stability condition:

$$\Delta t < \frac{\rho c_p (\Delta x)^2}{\lambda}$$

- Stability condition still severe; larger Δt are still possible, but may give rise to oscillations
- 2nd-order accurate in time: if the time step is small (stable), it is the most accurate scheme
- Requires solution of a linear system, thus more complicated then time-explicit

Fully-implicit time-scheme

Can be derived from the previous equations by setting f = 1:

$$\int_{t}^{t+\Delta t} T_P dt = T_P^1 \Delta t$$

University of

Nottinaham

$$a_P = \rho c_p \frac{\Delta x}{\Delta t} + \frac{\lambda_w}{\delta x_w} + \frac{\lambda_e}{\delta x_e}$$

$$a_E = -\frac{\lambda_e}{\delta x_e}, \qquad a_W = -\frac{\lambda_w}{\delta x_w}, \qquad b = \rho c_p \frac{\Delta x}{\Delta t} T_P^0$$

Stability condition:

$$oc_p \frac{\Delta x}{\Delta t} < 0$$
 Always respected!

- The fully-implicit time scheme is stable for any size of time step
- It's a 1st-order scheme, so accuracy is still limited
- Requires solution of a linear system, thus more complicated then time-explicit

What to take home from today's lecture

- How to discretise the 1D unsteady heat conduction equation using FV.
- Advantages/limits of explicit, fully-implicit and Crank-Nicolson schemes
- How to derive the condition for the numerical stability of the time-marching algorithm
- How to use Matlab to solve unsteady problems

Implement a FV code in Matlab to solve a 1D unsteady heat conduction problem, using the fully-implicit method.

Parameters:

University of Nottingham

- L=1 m
- n=21 equidistant nodes
- λ =400 W/(m·K), ρ =4000 kg/m³, c_p=400 J/(kg · K)
- T(x=0)=T(x=L)=T_w=300 K
- Initial condition T(x,t=0)=T₀=320 K
- Time-step size ∆t=100 s
- End time of simulation t_{end}=5000 s

T(x,t=0)=T0x=0x = I. ≻_x 320 Numerical Theoretical 315 at x=L/2돌₃₁₀ 305 300 2000 0 3000 1000 4000 5000 t [s]

Tw

Tw

Compare your results with the following analytical solution:

$$T(x,t) = T_w + \frac{2(T_0 - T_w)}{\pi} \sum_{i=1}^{\infty} \frac{\left[1 - (-1)^i\right]}{i} e^{-\alpha \mu_i^2 t} \sin(\mu_i x) \qquad \mu_i = \frac{i\pi}{L}, \alpha = \frac{\lambda}{\rho c_p}$$
12

Worked example 1

There will be $t_{end}/\Delta t=5000/100=50$ time-steps. At every k-th time-step:

University of

$$Tw Tw Tw x=0 T(x,t=0)=T0 x=L + x$$

1st CV:
$$a_{1,P}T_{1,P} + a_{1,E}T_{1,E} = b_1 \implies a_{1,1}T_1 + a_{1,2}T_2 = b_1$$

 $a_{1,1} = 1, \quad a_{1,2} = 0, \quad b_1 = T_w$

$$i^{\text{th}} \mathbf{CV}: \ a_{i,W} T_{i,W} + a_{i,P} T_{i,P} + a_{i,E} T_{i,E} = b_i \ \Rightarrow \ a_{i,i-1} T_{i-1} + a_{i,i} T_i + a_{i,i+1} T_{i+1} = b_i$$

$$a_{i,i-1} = -f \frac{\lambda}{\delta x}, \qquad a_{i,i} = \rho c_p \frac{\Delta x}{\Delta t} + f \frac{2\lambda}{\delta x}, \qquad a_{i,i+1} = -f \frac{\lambda}{\delta x}$$

$$b_i = \rho c_p \frac{\Delta x}{\Delta t} T_i^{k-1} + (1-f) \left[\frac{\lambda}{\delta x} T_{i-1}^{k-1} + \frac{\lambda}{\delta x} T_{i+1}^{k-1} - \frac{2\lambda}{\delta x} T_i^{k-1} \right]$$

nth **CV**: $a_{n,W}T_{n,W} + a_{n,P}T_{n,P} = b_n \Rightarrow a_{n,n-1}T_{n-1} + a_{n,n}T_n = b_n$

 $a_{n,n-1} = 0, \quad a_{n,n} = 1, \quad b_n = T_w$

The system is solved for $t=\Delta t, 2\Delta t, \ldots, k\Delta t, \ldots$, till t_{end}

When $t = \Delta t$. T^{k-1} in b_i is the initial condition

When $t > \Delta t$. T^{k-1} in b_i is the solution at the previous time instant