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Recap

1𝐷:
𝑑

𝑑𝑥
𝜆
𝑑𝑇

𝑑𝑥
+ 𝑆 𝑥, 𝑇 = 0

Steady-state diffusion equation, for example heat conduction:
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A=

A×T=B: linear algebraic system with n equations

A: n×n tridiagonal matrix; T,B: n×1 vectors

And what about unsteady equations?

𝑎𝑊𝑇𝑊 + 𝑎𝑃𝑇𝑃 + 𝑎𝐸𝑇𝐸 = 𝑏
FV

𝑎𝑊 = −
𝜆𝑤
𝛿𝑥𝑤

, 𝑎𝑃 =
𝜆𝑤
𝛿𝑥𝑤

+
𝜆𝑒
𝛿𝑥𝑒

− 𝑆𝑃Δ𝑥, 𝑎𝐸 = −
𝜆𝑒
𝛿𝑥𝑒

, 𝑏 = 𝑆𝐶Δ𝑥

T=A\B
Steady-state: we solve 

the system only once
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Numerical Methods – L4

Today’s menu

➢ Finite-volume method for unsteady PDE

➢ Explicit time-scheme

➢ Crank-Nicolson time-scheme

➢ Fully-implicit time-scheme

➢ Seminar 3 – solution of 1D unsteady heat equation with Matlab (demo 3)

Expected outcome: know the principles of time-marching algorithms for the 

solution of unsteady PDEs; know and be able to implement implicit/explicit 

time-schemes; use matlab to obtain the numerical solution.
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The temporal discretisation concept

The unsteady diffusion equation involves a first-order time-derivative, e.g. 1D unsteady heat 

conduction:

𝜕 𝜌𝑐𝑝𝑇

𝜕𝑡
=

𝜕

𝜕𝑥
𝜆
𝜕𝑇

𝜕𝑥
+ 𝑆 𝑥, 𝑡, 𝑇

When the time-derivative is first-order, the equation has a parabolic behavior with time: 

disturbances travel only towards the +𝑡 direction, and not backward (−𝑡).

Only one temporal boundary condition is required: the initial condition 𝑇(𝑥, 𝑡 = 0).

The solution in time is obtained by time-marching: the solution at any time 𝑡 + ∆𝑡 is found by 

advancing the solution from time 𝑡, no need to know what happens at times 𝑡 > 𝑡 + ∆𝑡.

Solution procedure: 

𝑡 = 0: we need a known initial condition, 𝑇(𝑥, 𝑡 = 0)

𝑡 = 1∆𝑡: discretisation of the equation linear system          solution            𝑇(𝑥, 𝑡 = 1∆𝑡)

𝑡 = 2∆𝑡: 𝑇(𝑥, 𝑡 = 1∆𝑡) is our new initial condition        linear system        solution        𝑇(𝑥, 𝑡 = 2∆𝑡)

𝑡 = 𝑡𝑓𝑖𝑛𝑎𝑙: 𝑇(𝑥, 𝑡 = 𝑡𝑓𝑖𝑛𝑎𝑙)

At every time step, we need to solve a new linear system 
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The unsteady finite-volume method – 1D

Equation to be solved: 

1D unsteady heat conduction (here with 𝑆 𝑥, 𝑡 = 0) 

𝜕 𝜌𝑐𝑝𝑇

𝜕𝑡
=

𝜕

𝜕𝑥
𝜆
𝜕𝑇

𝜕𝑥

Integration in space and time (r,cp constant):

Discretisation of the single terms:

𝑇𝑃
0: 𝑇𝑃 at time t, 𝑇𝑃

1: 𝑇𝑃 at time t+Dt

𝜌𝑐𝑝 න

𝑡

𝑡+∆𝑡

න

𝑉

𝜕𝑇

𝜕𝑡
𝑑𝑉𝑑𝑡 = න

𝑡

𝑡+∆𝑡

න

𝑉

𝜕

𝜕𝑥
𝜆
𝜕𝑇

𝜕𝑥
𝑑𝑉𝑑𝑡

𝜌𝑐𝑝 න

𝑡

𝑡+∆𝑡

න

𝑉

𝜕𝑇

𝜕𝑡
𝑑𝑉𝑑𝑡 = 𝜌𝑐𝑝 න

𝑤

𝑒

න

𝑡

𝑡+∆𝑡
𝜕𝑇

𝜕𝑡
𝑑𝑡 𝐴𝑑𝑥 = 𝜌𝑐𝑝 𝑇𝑃

1 − 𝑇𝑃
0 𝐴∆𝑥

න

𝑡

𝑡+∆𝑡

න

𝑉

𝜕

𝜕𝑥
𝜆
𝜕𝑇

𝜕𝑥
𝑑𝑉𝑑𝑡 = න

𝑡

𝑡+∆𝑡

න

𝑤

𝑒
𝜕

𝜕𝑥
𝜆
𝜕𝑇

𝜕𝑥
𝐴𝑑𝑥 𝑑𝑡 = න

𝑡

𝑡+∆𝑡

𝜆𝑒
𝑇𝐸 − 𝑇𝑃
𝛿𝑥𝑒

− 𝜆𝑤
𝑇𝑃 − 𝑇𝑊
𝛿𝑥𝑤

𝐴𝑑𝑡

Now, integration in time requires a profile assumption for T(t) between t and t+Dt
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The unsteady finite-volume method – 1D

Now, integration in time requires a profile assumption for T(t) between t and t+Dt.

The integral will be a function of 𝑇𝑃
0 and 𝑇𝑃

1. Easiest solution: a linear profile!  

• f=0 explicit scheme: 1st order accurate, 

conditionally stable

• f=1 fully-implicit scheme: 1st order accurate, 

unconditionally stable

• f=1/2 Crank-Nicolson scheme: 2nd order accurate, conditionally stable

න

𝑡

𝑡+∆𝑡

𝑇𝑃𝑑𝑡 = 𝑓𝑇𝑃
1 + 1 − 𝑓 𝑇𝑃

0 ∆𝑡

𝜌𝑐𝑝 𝑇𝑃
1 − 𝑇𝑃

0 ∆𝑥 = 𝑓 𝜆𝑒
𝑇𝐸
1 − 𝑇𝑃

1

𝛿𝑥𝑒
− 𝜆𝑤

𝑇𝑃
1 − 𝑇𝑊

1

𝛿𝑥𝑤
+ 1 − 𝑓 𝜆𝑒

𝑇𝐸
0 − 𝑇𝑃

0

𝛿𝑥𝑒
− 𝜆𝑤

𝑇𝑃
0 − 𝑇𝑊

0

𝛿𝑥𝑤
∆𝑡
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Assembling the system and advancing the solution in time

The unsteady finite-volume method – 1D

−𝑓
𝜆𝑤
𝛿𝑥𝑤

𝑇𝑊 + 𝜌𝑐𝑝
Δ𝑥

Δ𝑡
+ 𝑓

𝜆𝑤
𝛿𝑥𝑤

+
𝜆𝑒
𝛿𝑥𝑒

𝑇𝑃 − 𝑓
𝜆𝑒
𝛿𝑥𝑒

𝑇𝐸 =

= 𝜌𝑐𝑝
Δ𝑥

Δ𝑡
𝑇𝑃
0 + 1 − 𝑓

𝜆𝑤
𝛿𝑥𝑤

𝑇𝑊
0 +

𝜆𝑒
𝛿𝑥𝑒

𝑇𝐸
0 −

𝜆𝑤
𝛿𝑥𝑤

+
𝜆𝑒
𝛿𝑥𝑒

𝑇𝑃
0

(superscript 1 is here dropped)

𝑎𝑊𝑇𝑊 + 𝑎𝑃𝑇𝑃 + 𝑎𝐸𝑇𝐸 = 𝑏

Final linear equation

𝑎𝑊 0

0
𝑎𝑃 𝑎𝐸

0

0 𝑇𝑃 𝑏× =
A×T=B: linear algebraic system with n equations

A: tridiagonal n×n matrix, T,B: n×1 vectors

The system is solved for t=Dt, 2Dt, 3Dt, …, till tend

When t=Dt:   𝑻𝟎 in vector B is the initial condition

When t>Dt:   𝑻𝟎 in vector B is the solution at the previous time instant

𝑎𝑊 = −𝑓
𝜆𝑤
𝛿𝑥𝑤

𝑎𝐸 = −𝑓
𝜆𝑒
𝛿𝑥𝑒

𝑎𝑃 = 𝜌𝑐𝑝
Δ𝑥

Δ𝑡
+ 𝑓

𝜆𝑤
𝛿𝑥𝑤

+
𝜆𝑒
𝛿𝑥𝑒

𝑏 = 𝜌𝑐𝑝
Δ𝑥

Δ𝑡
𝑇𝑃
0 + 1 − 𝑓

𝜆𝑤
𝛿𝑥𝑤

𝑇𝑊
0 +

𝜆𝑒
𝛿𝑥𝑒

𝑇𝐸
0 −

𝜆𝑤
𝛿𝑥𝑤

+
𝜆𝑒
𝛿𝑥𝑒

𝑇𝑃
0
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Explicit time-scheme

Can be derived from the previous equations by setting 𝑓 = 0:

න

𝑡

𝑡+∆𝑡

𝑇𝑃𝑑𝑡 = 𝑇𝑃
0∆𝑡

Coefficients: 𝑎𝑃 = 𝜌𝑐𝑝
Δ𝑥

Δ𝑡
, 𝑎𝐸 = 0, 𝑎𝑊 = 0

𝑏 =
𝜆𝑤
𝛿𝑥𝑤

𝑇𝑊
0 +

𝜆𝑒
𝛿𝑥𝑒

𝑇𝐸
0 −

𝜆𝑤
𝛿𝑥𝑤

+
𝜆𝑒
𝛿𝑥𝑒

− 𝜌𝑐𝑝
Δ𝑥

Δ𝑡
𝑇𝑃
0

Stability condition: coefficient for 𝑇𝑃
0 when at LHS must be negative (remember L1, slide 15)

𝜆𝑤
𝛿𝑥𝑤

+
𝜆𝑒
𝛿𝑥𝑒

− 𝜌𝑐𝑝
Δ𝑥

Δ𝑡
< 0

Example: 𝜆𝑤 = 𝜆𝑒 , 𝛿𝑥𝑤 = 𝛿𝑥𝑒 = Δ𝑥 ∆𝑡 <
𝜌𝑐𝑝 Δ𝑥 2

2𝜆

• ∆𝑡𝑚𝑎𝑥∝ ∆𝑥 2: if we refine the grid we must exponentially decrease the time step! 

• Equations for each CV are decoupled             no need to solve a system of equations

• It’s a 1st-order scheme, so accuracy is still limited

Note: LHS means left-hand side of discretization equation
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Crank-Nicolson time-scheme

Can be derived from the previous equations by setting 𝑓 = 1/2:

න

𝑡

𝑡+∆𝑡

𝑇𝑃𝑑𝑡 =
𝑇𝑃
1 + 𝑇𝑃

0

2
∆𝑡

𝑎𝐸 = −
1

2

𝜆𝑒
𝛿𝑥𝑒

, 𝑎𝑊 = −
1

2

𝜆𝑤
𝛿𝑥𝑤

𝑏 =
1

2

𝜆𝑤
𝛿𝑥𝑤

𝑇𝑊
0 +

𝜆𝑒
𝛿𝑥𝑒

𝑇𝐸
0 −

𝜆𝑤
𝛿𝑥𝑤

+
𝜆𝑒
𝛿𝑥𝑒

− 2𝜌𝑐𝑝
Δ𝑥

Δ𝑡
𝑇𝑃
0

𝑎𝑃 = 𝜌𝑐𝑝
Δ𝑥

Δ𝑡
+
1

2

𝜆𝑤
𝛿𝑥𝑤

+
𝜆𝑒
𝛿𝑥𝑒

Stability condition: ∆𝑡 <
𝜌𝑐𝑝 Δ𝑥 2

𝜆

• Stability condition still severe; larger ∆𝑡 are still possible, but may give rise to oscillations

• 2nd-order accurate in time: if the time step is small (stable), it is the most accurate scheme

• Requires solution of a linear system, thus more complicated then time-explicit



10

Fully-implicit time-scheme

Can be derived from the previous equations by setting 𝑓 = 1:

න

𝑡

𝑡+∆𝑡

𝑇𝑃𝑑𝑡 = 𝑇𝑃
1∆𝑡

𝑎𝑃 = 𝜌𝑐𝑝
Δ𝑥

Δ𝑡
+

𝜆𝑤
𝛿𝑥𝑤

+
𝜆𝑒
𝛿𝑥𝑒

𝑏 = 𝜌𝑐𝑝
Δ𝑥

Δ𝑡
𝑇𝑃
0𝑎𝐸 = −

𝜆𝑒
𝛿𝑥𝑒

, 𝑎𝑊 = −
𝜆𝑤
𝛿𝑥𝑤

,

Stability condition:                                               Always respected!−𝜌𝑐𝑝
Δ𝑥

Δ𝑡
< 0

• The fully-implicit time scheme is stable for any size of time step

• It’s a 1st-order scheme, so accuracy is still limited

• Requires solution of a linear system, thus more complicated then time-explicit
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Numerical Methods – L4

What to take home from today’s lecture

➢ How to discretise the 1D unsteady heat conduction equation using FV

➢ Advantages/limits of explicit, fully-implicit and Crank-Nicolson schemes

➢ How to derive the condition for the numerical stability of the time-marching

algorithm

➢ How to use Matlab to solve unsteady problems
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Implement a FV code in Matlab to solve a 1D unsteady heat conduction problem, 

using the fully-implicit method.

Worked example 1

Parameters:

• L=1 m

• n=21 equidistant nodes

• l=400 W/(m∙K), r=4000 kg/m3, cp=400 J/(kg ∙ K)

• T(x=0)=T(x=L)=Tw=300 K

• Initial condition T(x,t=0)=T0=320 K

• Time-step size Dt=100 s

• End time of simulation tend=5000 s

Compare your results with the following analytical solution:

𝑇 𝑥, 𝑡 = 𝑇𝑤 +
2 𝑇0 − 𝑇𝑤

𝜋


𝑖=1

∞
1 − −1 𝑖

𝑖
𝑒−𝛼𝜇𝑖

2𝑡 sin 𝜇𝑖𝑥 𝜇𝑖 =
𝑖𝜋

𝐿
, 𝛼 =

𝜆

𝜌𝑐𝑝

at x=L/2
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There will be tend/Dt=5000/100=50 time-steps.

At every k-th time-step:

1st CV: 𝑎1,𝑃𝑇1,𝑃 + 𝑎1,𝐸𝑇1,𝐸 = 𝑏1 ⇒ 𝑎1,1𝑇1 + 𝑎1,2𝑇2 = 𝑏1

𝑎1,1 = 1, 𝑎1,2 = 0, 𝑏1 = 𝑇𝑤

ith CV: 𝑎𝑖,𝑊𝑇𝑖,𝑊 + 𝑎𝑖,𝑃𝑇𝑖,𝑃 + 𝑎𝑖,𝐸𝑇𝑖,𝐸 = 𝑏𝑖 ⇒ 𝑎𝑖,𝑖−1𝑇𝑖−1 + 𝑎𝑖,𝑖𝑇𝑖 + 𝑎𝑖,𝑖+1𝑇𝑖+1 = 𝑏𝑖

𝑎𝑖,𝑖−1 = −𝑓
l

𝛿𝑥
, 𝑎𝑖,𝑖 = 𝜌𝑐𝑝

Δ𝑥

Δ𝑡
+ 𝑓

2l

𝛿𝑥
, 𝑎𝑖,𝑖+1 = −𝑓

l

𝛿𝑥

𝑏𝑖 = 𝜌𝑐𝑝
Δ𝑥

Δ𝑡
𝑇𝑖
𝑘−1 + 1 − 𝑓

l

𝛿𝑥
𝑇𝑖−1
𝑘−1 +

l

𝛿𝑥
𝑇𝑖+1
𝑘−1 −

2l

𝛿𝑥
𝑇𝑖
𝑘−1

𝑎𝑛,𝑊𝑇𝑛,𝑊 + 𝑎𝑛,𝑃𝑇𝑛,𝑃 = 𝑏𝑛 ⇒ 𝑎𝑛,𝑛−1𝑇𝑛−1 + 𝑎𝑛,𝑛𝑇𝑛 = 𝑏𝑛nth CV:

𝑎𝑛,𝑛−1 = 0, 𝑎𝑛,𝑛 = 1, 𝑏𝑛 = 𝑇𝑤

The system is solved for t=Dt, 2Dt, …, kDt, …, till tend

When t=Dt:   𝑻𝒌−𝟏 in 𝑏𝑖 is the initial condition

When t>Dt:   𝑻𝒌−𝟏 in 𝑏𝑖 is the solution at the previous time instant

Worked example 1
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