

# MMME3086 Computer Modelling Techniques

Introduction

Module convenor: Dr Mirco Magnini Office: Coates B100a E-mail: mirco.magnini@nottingham.ac.uk



| Module name        | Computer Modelling Techniques<br>MMME3086                                                                                                                                  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Credits            | 20 (requires ~200 hrs study)                                                                                                                                               |
| Year/Level         | Level 3                                                                                                                                                                    |
| Semester           | Autumn Semester                                                                                                                                                            |
| Module<br>Convenor | Dr Mirco Magnini                                                                                                                                                           |
| Teaching staff     | Dr Mirco Magnini (Numerical Methods, NM)<br>Dr Chris Bennett, Dr Luke Parry (Finite Element<br>Analysis, FEA)<br>Dr Donald Giddings (Computational Fluid Dynamics,<br>CFD) |

| Educational | To provide students with a basic knowledge and            |
|-------------|-----------------------------------------------------------|
| Aims        | understanding of the mainstream computer modelling        |
|             | techniques used in modern engineering practice, including |
|             | Finite Element and Computational Fluid Dynamics methods.  |
|             |                                                           |

University of Nottingham

## Why do we need computer modelling techniques?

Because many problems in engineering do not have 'analytical solutions', and practical tests may be difficult, expensive, dangerous.



Computational analysis of aerodynamics on F1 car. Source: <u>https://www.simscale.com/blog/front-</u> <u>wing-f1-car-optimize/</u>



Computational structural static analysis of crankshaft. Source: <u>https://www.semanticscholar.org/paper/S</u> <u>tructural-Static-Analysis-of-Crankshaft-</u> <u>Mounika/f67a6d1005952e3d1788588eae</u> <u>677a1857b72199</u>

#### University of Nottingham UK I CHINA I MALAYSIA Examples from my own research

### Fluid flow and heat transfer in pin-fin heat exchangers





## Water boiling over a surface at T>100 °C (p=1 bar)



Source: https://www.youtube.com/watch?v=U6 LQeFmY-IU





In this module, we cover the main computational techniques to 'simulate' the dynamics of fluid (CFD) and solid structures (FEA) in engineering.

There exists a common procedure: the fluid or structural physical behavior is governed by a set of differential equations; these are discretised on a computational domain made of discrete elements, and then solved to obtain a solution that approximates the fluid flow or structure behaviour.

1. Geometry and boundary conditions are defined (example: fluid flow and heat transfer)





2. The geometry is decomposed in n nodes (aka control volumes, finite elements)





**University of** 

8

## Introduction

University of

Nottingham

4. Regardless of discretisation method, we obtain a linear system of n equations, where  $\varphi_i$  are our unknowns:

$$\begin{cases} i = 1: \ a_{1,1}\varphi_1 + a_{1,2}\varphi_2 + \dots + a_{1,i}\varphi_i + \dots + a_{1,n}\varphi_n = b_1 \\ i = 2: \ a_{2,1}\varphi_1 + a_{2,2}\varphi_2 + \dots + a_{2,i}\varphi_i + \dots + a_{2,n}\varphi_n = b_2 \\ \vdots \\ i: \ a_{i,1}\varphi_1 + a_{i,2}\varphi_2 + \dots + a_{i,i}\varphi_i + \dots + a_{i,n}\varphi_n = b_i \\ \vdots \\ i = n: \ a_{n,1}\varphi_1 + a_{n,2}\varphi_2 + \dots + a_{n,i}\varphi_i + \dots + a_{n,n}\varphi_n = b_n \end{cases}$$





$$\boldsymbol{A} = \begin{bmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{bmatrix}, \boldsymbol{\varphi} = \begin{bmatrix} \varphi_1 \\ \vdots \\ \varphi_n \end{bmatrix}, \boldsymbol{B} = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$$

5. Solution of the linear system:  $\varphi_i$  is obtained for each node i=1,...,n

Example:  $\varphi$  was the fluid temperature





MMME3086 covers the whole simulation procedure and the most popular simulation software for CFD (fluids) and FEA (solid):



Dr. Mirco Magnini Numerical Methods: FV, fundamental aspects, <u>Matlab</u> Teaching weeks 1-3; NM coursework



Dr. Chris Bennett Finite Element Analysis: FE, solid mechanics, <u>Abaqus</u> Teaching weeks 4-7; FEA coursework



Dr. Don Giddings Computational Fluid Dynamics: FV, <u>ANSYS</u> Teaching weeks 8-11; CFD coursework Lectures: Thursday, 11-13, Coates Road Auditorium.

Seminars: Friday, 09-11, Coates Road Auditorium. Bring your own laptop.

| Teaching<br>week | Section | w/b    | Lecture topic (2h)                                                                                | Seminar session (2h)                                                                      | Coursework dates                       |
|------------------|---------|--------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------|
| 1                | NM      | 02 Oct | Steady diffusion equation                                                                         | 1D steady finite-volume in<br>Matlab                                                      |                                        |
| 2                | NM      | 09 Oct | Solution of linear systems, unsteady diffusion equation                                           | Gauss-Seidel method in<br>Matlab                                                          |                                        |
| 3                | NM      | 16 Oct | Solution of nonlinear equations, numerical integration                                            | 1D unsteady finite-volume in Matlab                                                       | Mon 16 Oct: NM<br>coursework release   |
| 4                | FEA     | 23 Oct | 1D FE, Stiffness Matrices                                                                         | Stiffness Matrix Assembly,<br>and Solution                                                |                                        |
| 5                | FEA     | 30 Oct | Truss/Pin-jointed FE                                                                              | Abaqus: Geo, Mesh                                                                         | Mon 30 Oct: NM coursework deadline     |
| 6                | FEA     | 06 Nov | Continuum Elements, Plates and Shells                                                             | Abaqus: BCs, Loading,<br>Solution, Post-processing                                        | Thu 09 Nov: FEA<br>coursework release  |
| 7                | FEA     | 13 Nov | Practical Notes on FE                                                                             | FEA coursework support                                                                    |                                        |
| 8                | CFD     | 20 Nov | Practical introduction to CFD and a commercial code                                               | Model creation and mesh generation.                                                       | Thu 23 Nov: FEA<br>coursework deadline |
| 9                | CFD     | 27 Nov | Derive the Navier Stokes equations of<br>fluid motion in 3D for an incompressible,<br>steady flow | Setting up the models in<br>CFD solution and<br>achieving converged<br>solution in Fluent | Thu 30 Nov: CFD<br>coursework release  |
| 10               | CFD     | 04 Dec | Demonstrate how the finite volume<br>numerical method works in a 1D case                          | Post solution processing<br>of CFD model and CW<br>support                                |                                        |
| 11               | CFD     | 11 Dec | CFD overview and revision                                                                         | -                                                                                         | Thu 14 Dec: CFD coursework deadline    |

11



**University of** 

| Coursework | Three marked coursework assignments:                           |  |  |
|------------|----------------------------------------------------------------|--|--|
|            | NM coursework (30%)                                            |  |  |
|            | FEA coursework (35%)                                           |  |  |
|            | CFD coursework (35%)                                           |  |  |
|            | The assignments do not require supervision.                    |  |  |
|            | <ul> <li>Time required to complete each assignment:</li> </ul> |  |  |
|            | 6 hours approx.                                                |  |  |
|            | Submission deadline:                                           |  |  |
|            | 2 weeks after releasing the assignment                         |  |  |
|            | Educational objective:                                         |  |  |
|            | To gain some practical experience of the                       |  |  |
|            | fundamentals of solving numerical problems and                 |  |  |
|            | running FEA and CFD engineering software codes                 |  |  |
|            | that are widely used in industry.                              |  |  |

Only for students resitting from 22/23: final exam in January 2023, worth 40% of the module. Format identical to 21/22 and 22/23.



| Learning<br>Outcomes | On successful completion of this module students will be able to:                                                                                          |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | LO1 – Understand the theoretical background of numerical methods used in engineering analysis, Finite Element and Computational Fluid Dynamics techniques. |
|                      | LO2 – Identify and apply appropriate computer modelling techniques to solve specific engineering problems.                                                 |
|                      | LO3 – Demonstrate an understanding of how computer programmes can be used to solve practical solid and fluid mechanics problems in engineering.            |
|                      | LO4 – Evaluate the accuracy and sources of error in solving solid and fluid mechanics problems in engineering using computational models.                  |
|                      | LO5 – Gain hands-on experience of running state of the art<br>FEA and CFD software codes widely used in industry                                           |



#### <u>The Finite Difference (FD) Method – NOT ON MMME3086</u>

- The entire solution domain is divided into a grid of "cells".
- The derivatives in the governing partial differential equations are written in terms of finite difference equations.
- The solution matrix is banded.
- The FD method is relatively easy to program. Its main serious drawback is that it is not suitable for problems with awkward irregular geometries.
- FD methods are popular for heat transfer and fluid flow problems, rather than stress analysis problem.



Internal grid of cells

#### The Finite Element (FE) Method

University of

- The entire solution domain (the volume) is divided into small '*finite'* segments (hence the name "*Finite Elements*").
- Each element is defined by its corner points (called "nodes").
- All elements are assembled together in a "*mesh"* and the requirements of continuity and equilibrium are satisfied between neighbouring elements. .
- The solution matrix is sparsely populated (i.e. with relatively few non-zero coefficients).
- The equations are solved numerically to compute the displacements at each node.
- The FE method is very suitable for complex geometries.



#### The Finite Volume (FV) Method

University of

Nottingham

- FV methods are widely used in computational fluid dynamics software.
- The solution domain is divided into "control volumes" where the continuity of fluid flow into and out of the control volume is satisfied.
- The control volumes look similar to the elements used in FEA, but the variables of interest are located at the centre of the control volume (whereas in FEA they are at the corners 'nodes' of the element).
- Conservation equations for mass, momentum, energy, etc., are discretized into algebraic equations, and the equations are then solved to obtain the variables in the flow field.







University of

#### **Benefits of Using Simulation and Modelling in Engineering**

- Ability to model complex designs of engineering components and structures
- Reduction of design and development time of products
- Reduction of the need for experimental testing of prototypes (although some testing is inevitable)
- Comprehensive information obtained regarding the distribution of stresses/strains or flow inside or around a structure.
- Identification of weaknesses and failure positions in engineering structures



#### **Risks and Dangers of Using simulation techniques**

- Incorrect data input by the user (i.e. "Rubbish in" = "Rubbish out")
- Errors in translating the real-life boundary conditions into the software
- Incorrect use of the FEA and CFD software
- Using too few elements (the mesh being too coarse)
- Attempting to solve non-linear problems without understanding the background theory
- Using the wrong type of elements (e.g. in FEA using shell elements when continuum elements would be best)

#### ...and the worst risk is:

University of

• Using FEA and CFD software as "black boxes" without understanding the underlying fundamental theory.

