MTHS2007 Advanced Mathematics and Statistics for Mechanical Engineers Chapter 1: revision

School of Mathematical Sciences

UNITED KINGDOM · CHINA · MALAYSIA

Introduction

In case you've forgotten anything from your mathematical studies in your first year.....

- 1.1 Complex numbers
- 1.2 Some trigonometry
- 1.3 Partial derivatives

- Complex numbers arise naturally when solving quadratic equations (and other polynomial equations).
- If $ax^2 + bx + c = 0$ with $a \neq 0$, we know that the solutions are

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

• If $b^2 < 4ac$, this expression involves the square root of a negative number. No such real number exists.

• For example, $x^2 - 2x + 2 = 0$ has the two solutions

$$x = \frac{2 \pm \sqrt{(-2)^2 - 4.1.2}}{2.1} = \frac{2 \pm \sqrt{-4}}{2} = 1 \pm \sqrt{-1}.$$

- We define $i = \sqrt{-1}$, so that $i^2 = -1$.
- i is an example of an *imaginary* number.
- 1 + i is an example of a *complex* number.
- Make sure that you can remember how to solve quadratic equations!

Some Taylor series

$$\exp x = e^{x} = 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \frac{1}{4!}x^{4} + \dots,$$
$$\sin x = x - \frac{1}{3!}x^{3} + \frac{1}{5!}x^{5} - \dots,$$
$$\cos x = 1 - \frac{1}{2!}x^{2} + \frac{1}{4!}x^{4} + \dots.$$

x must be measured in radians, not degrees!

• These Taylor series show that

$$e^{ix} = 1 + ix + \frac{1}{2!}(ix)^{2} + \frac{1}{3!}(ix)^{3} + \frac{1}{4!}(ix)^{4} + \dots$$

$$= 1 + ix - \frac{1}{2!}x^{2} - \frac{1}{3!}ix^{3} + \frac{1}{4!}x^{4} + \dots$$

$$= 1 - \frac{1}{2!}x^{2} + \frac{1}{4!}x^{4} + \dots$$

$$+ ix - \frac{1}{3!}ix^{3} + \dots$$

$$\Rightarrow e^{ix} = \cos x + i\sin x$$

• This is **Euler's formula**.

• We will need to remember Euler's formula when we study constant coefficient ordinary differential equations (Chapter 2).

1.2 Some Trigonometry

• The standard formula sheet contains the identities

 $\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B,$

 $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B.$

• These come from Euler's formula, because

 $e^{i(A\pm B)} = e^{iA}e^{\pm iB},$

 $\Rightarrow \cos (A \pm B) + i \sin (A \pm B) = (\cos A + i \sin A) (\cos B \pm i \sin B)$

 $= \cos A \cos B \mp \sin A \sin B + i \sin A \cos B \pm i \cos A \sin B.$

1.2 Some Trigonometry

• The standard formula sheet contains the identities

 $\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B,$

 $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B.$

Now, we can see that

 $\sin (A - B) + \sin (A + B)$

 $= (\sin A \cos B - \cos A \sin B) + (\sin A \cos B + \cos A \sin B)$

 $= 2 \sin A \cos B$

and therefore

$$\sin A \cos B = \frac{1}{2} \{ \sin (A - B) + \sin (A + B) \}.$$

• The formulas

$$\sin A \cos B = \frac{1}{2} \{ \sin (A - B) + \sin (A + B) \},\$$
$$\sin A \sin B = \frac{1}{2} \{ \cos (A - B) - \cos (A + B) \},\$$
$$\cos A \cos B = \frac{1}{2} \{ \cos (A - B) + \cos (A + B) \},\$$

will be crucial when we come to study **Fourier Series** in Chapters 3 and 4, but are not on your Formula Sheet.

1.3 Partial Derivatives

- **Partial Differential Equations** (Chapter 6) involve partial derivatives.
- For example, if $f(x, y) = e^{-x} \cos \pi y$,

$$\frac{\partial f}{\partial x} = -e^{-x}\cos \pi y, \quad \frac{\partial f}{\partial y} = -\pi e^{-x}\sin \pi y,$$

 $\frac{\partial^2 f}{\partial x^2} = e^{-x} \cos \pi y, \quad \frac{\partial^2 f}{\partial y^2} = -\pi^2 e^{-x} \cos \pi y, \quad \frac{\partial^2 f}{\partial x \partial y} = \pi e^{-x} \sin \pi y.$

• Make sure that you are can confidently differentiate simple functions of more than one variable.