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4 Differential Equations: Application of Fourier Series

The application of Fourier series to represent a function can be very hel-
pful in solving differential equations by simplifying any given forcing func-
tions (RHSs of ODEs) or replacing boundary/initial conditions (ODEs
and PDEs) by using expansions in terms of sine or cosine functions.

If the differential equation is linear, the superposition principle can then
be used to find the general solution for an ODE with a periodic RHS, for
example.
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Example Periodically driven mechanical oscillator
Fourier series are particularly useful if the RHS of an ODE is a periodic
function. Consider, for example the case of a periodically forced mecha-
nical oscillator

M
d2x
dt2 + c

dx
dt

+ kx = F (t), (1)

where F (t) is a periodic function in t, satisfying

F (t) = F (t + T ).

We can denote by

Ω =
2π
T

the corresponding circular frequency. It is convenient to re-write this as

d2x
dt2 + 2γ

dx
dt

+ ω2
0x = f (t) (2)

where

γ =
c
2M

, ω0 =

√
k
M

and f (t) =
1
M

F (t).

MTHS2007 Advanced Mathematics for Engineers 3



Since f (t) has period T = 2π/Ω we can write it as a Fourier series,

f (t) =
a0

2
+

∞∑
n=1

(an cos (nΩt) + bn sin (nΩt)) .

We have previously seen how to solve this problem with a single cosine
term on the right.

We can solve the more general problem by finding a corresponding parti-
cular integral for each of the RHSs cos (nΩt) and sin (nΩt) and adding
them up in the right combination.
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This is equivalent to the following procedure:

As we know that xp(t) is constructed out of a constant (arising from
the constant term in f ), and terms containing cos (nΩt) and sin (nΩt)
arising from the cosine and sine terms in f respectively, there must be a
particular integral that is periodic in t, with period T = 2π/Ω.

This means that we can write

xp(t) =
A0

2
+

∞∑
n=1

(An cos (nΩt) + Bn sin (nΩt)) , (3)

at least as long as no term in the Fourier series for f (t) is a solution of
the homogeneous equation associated with (2).
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This means

dxp

dt
= Ω

∞∑
n=1

(nBn cos (nΩt)− nAn sin (nΩt))

and
d2xp

dt2 = Ω2
∞∑

n=1

(
−n2An cos (nΩt)− n2Bn sin (nΩt)

)
.

We can insert these into the ODE (2) and compare coefficients.

ω2
0A0 = a0,

−n2Ω2An + 2nΩγBn + ω2
0An

−n2Ω2Bn − 2nΩγAn + ω2
0Bn

=
=

an

bn

}
for n ≥ 1.

For convenience the last two equations here can be rewritten

(ω2
0 − n2Ω2)An + 2nΩγBn = an

(ω2
0 − n2Ω2)Bn − 2nΩγAn = bn
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We can solve these equations for An and Bn to find

A0 =
a0

ω2
0
, (4)

An =
(ω2

0 − n2Ω2)an − 2nΩγbn

(ω2
0 − n2Ω2)2 + (2nΩγ)2 , (5)

Bn =
(ω2

0 − n2Ω2)bn + 2nΩγan

(ω2
0 − n2Ω2)2 + (2nΩγ)2 . (6)

With these we can then write down the Fourier series representation of
the particular integral. Adding this to the complementary function will
yield the general solution of the inhomogeneous equation.
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Example
A weighted spring with natural frequency ω0 is forced by the 2π periodic
forcing function

f (t) =

{
(t + π) for −π ≤ t < 0
(π − t) for 0 ≤ t < π.

The vertical displacement y of the weight satisfies the equation

d2y
dt2 + ω2

0y = f (t). (7)

Find y as a function of t.
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We start by expressing f (t) as a Fourier series. Since f is an even function,
we have bn = 0 for all n, and the coefficients an are given by

an =
2
π

∫ π
0

(π − t) cos (nt) dt,

Then
a0 = π

when n = 0 and

an =
2
π

[
π

n
sin (nt)−

1
n2 cos (nt)−

t
n
sin (nt)

]π
0

=
2

n2π
(1− (−1)n),

when n ≥ 1 (after some work involving integration by parts).

Substituting the Fourier series for f (t) into (6) gives

d2y
dt2 + ω2

0y =
π

2
+

∞∑
n=1

2
πn2 (1− (−1)n) cos (nt).
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Now write the particular integral as

yp(t) =
A0

2
+

∞∑
n=1

(An cos (nt) + Bn sin (nt)) ,

ie
d2yp

dt2 =

∞∑
n=1

(
−n2An cos (nt)− n2Bn sin (nt)

)
.

Inserting all this into the ODE, we get

ω2A0

2
+

∞∑
n=1

(
(ω2

0 − n2)An cos (nt) + (ω2
0 − n2)Bn sin (nt)

)

=
π

2
−
∞∑

n=1

2
πn2 ((−1)n − 1) cos (nt).
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We can now determine An, Bn by comparing coefficients,

A0 =
π

ω2
0
,

An

Bn

=

=

2(1− (−1)n)

πn2(ω2
0 − n2)

0

 (n ≥ 1).

Two independent solutions to the homogeneous version of (6) (i.e. with
F = 0) are cos (ω0t) and sin (ω0t) and it follows that the general solution
to (6) is

y(t) = C cos (ω0t) + D sin (ω0t) +
π

2ω2
0

+
4
π

∑
n odd

cos (nt)

n2(ω2
0 − n2)

. (8)
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Figure 1: This picture shows yp for ω0 = 1.1, ω0 = 1.2 and ω0 = 1.3.
The closer ω0 is to one of the values of n, the larger the amplitude of y
will be. This effect is called resonance.
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