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6 Introduction to Partial Differential Equations (PDEs)

PDEs are differential equations in which there is more than one inde-
pendent variable. They arise in the modelling of a wide range of physi-
cal phenomena including electromagnetism, fluid dynamics, elasticity and
heat conduction, so their solution underlies much of modern Engineering
Science.

In this module we will concentrate on use of an important technique for
the solution of linear PDEs (PDEs in which the dependent variable and
its derivatives appear in a linear fashion).
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6.1 The three most important PDEs

Laplace’s equation Comes up in solving problems in electrostatics and
fluid motion, and is written here

∂2ϕ

∂x2 +
∂2ϕ

∂y2 = 0, later: add bcs

for a 2D problem: find ϕ(x , y) for (x , y) in some region in the plane.

The wave equation describes waves on a string:

∂2ϕ

∂t2 = c2 ∂
2ϕ

∂x2 later: add bcs and ics

Here the spatial dimension is 1, but there are higher-dimensional versions.

The heat/diffusion equation describes diffusion or heat transport

∂ϕ

∂t
= D

∂2ϕ

∂x2 later: add bcs and ics

Here again there are higher-dimensional versions.
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The principle of superposition

The examples give so far are linear and homogeneous and so are subject
to the principle of superposition.

This means that if ϕ1 and ϕ2 are any two solutions then

ϕ = aϕ1 + bϕ2.

is also a solution, for any constants a and b.

We can apply the superposition principle to build solutions of
problems subject to homogeneous boundary conditions, such as

ϕ|x=0 = 0
∂ϕ

∂x

∣∣∣∣
x=L

= 0.
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Here is an example of a problem we hope to be able to solve at the end
of this section:

Problem Solve the heat equation

∂ϕ

∂t
= D

∂2ϕ

∂x2 for 0 < x < L and t > 0,

subject to the boundary conditions

ϕ(0, t) = 0 and ϕx (L, t) = 0, for t > 0

(where ϕx ≡ ∂ϕ/∂x) and the initial condition

ϕ(x , 0) = sin
(πx
2L

)
, for 0 < x < L.
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The Wave Equation
Force (vertical component) on a
small segment of string at height
y = ϕ(x , t) is

force ∝
∂2ϕ

∂x2

(assuming small displacements).

Newton’s law then leads to the equation

∂2ϕ

∂t2 = c2 ∂
2ϕ

∂x2 ,

where

ϕ(x , t) = (small) lateral displacement of the string at time t and
position x .

c is a constant depending on the density and tension of the string -
the wave speed
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For an explicit solution of the equation we need both

Boundary conditions: telling us how the string is attached at the
ends, such as

ϕ(0, t) = ϕ(L, t) = 0.

Initial conditions: telling is the initial position and velocity for each
piece of the string, which amounts to

ϕ(x , 0) and ϕt(x , 0)

being specified (recall ϕt ≡ ∂ϕ/∂t).
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The Diffusion Equation
The diffusion equation is also known as the heat equation.

Fourier’s law (or Fick’s Law for con-
centration diffusion) says

heat flow ∝ −
∂T
∂x
.

The rate of change of temperature of a small segment is determined by
the net flow of heat into the segment:

⇒
∂T
∂t

= D
∂2T
∂x2 ,

where

T (x , t) = temperature at time t and position x .

D is a constant depending on crossection and material properties
of rod - the thermal diffusivity or diffusion constant.
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For an explicit solution of the equation we need

Boundary conditions: telling us what the the physical set-up of the
rod is at each end. For example, if both ends are insulated (no heat
flow), then by Fourier’s law

Tx (0, t) = Tx (L, t) = 0

(recall Tx ≡ ∂T/∂x). Alternatively, the temperature at one or
both ends might be fixed, as in

T (0, t) = T (L, t) = 0.

Initial conditions tell us the initial temperature profile of the rod:

T (x , 0) = given function.

Note that the equation is first-order in time, so we don’t need
Tt(x , 0).
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Laplace’s equation

This comes up in a wide range of applications, such as fluid mechanics
and electrostatics but a convenient motivation for us comes from steady-
state heat transfer.

The diffusion equation in two dimensions (for example, for the tempera-
ture of a metal plate) is

∂T
∂t

= D
(
∂2T
∂x2 +

∂2T
∂y2

)
.

For steady heat flow, ∂T/∂t = 0, so

∂2T
∂x2 +

∂2T
∂y2 = 0,

where now we regard T (x , y) as being a function only of the two Cartesian
coordinates (x , y).
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For an explicit solution of the equation we need boundary conditions only
- but along the 1D boundary of the 2D plate. Consider the example of a
rectangular plate:

Boundary conditions specifying T along the boundary amounts to impo-
sing

1○T (x , 0) = f (x) for 0 < x < a

2○T (a, y) = g(y) for 0 < y < b

3○T (x , b) = h(x) for 0 < x < a

4○T (0, y) = p(y) for 0 < y < b,

where f , g, h and p are all functions given to us by the person whose job
is to construct the physical model.
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6.2 Solution by separation of variables

In the case of a PDE with two independent variables (x , t) or (x , y), we
can separate variables by looking for solutions of the form

ϕ(x , t) = X (x)T (t) or ϕ(x , y) = X (x)Y (y). (1)

To understand why this is useful, consider the PDE

∂2ϕ

∂x∂t
+ ϕ sin x = 0.

Substituting in (1) gives

X ′(x)T ′(t) + X (x)T (t) sin x = 0.

Rearrange this so that all terms depending on t are on the LHS, and all
terms depending on x on the RHS,

T ′(t)
T (t)

= −
X (x)
X ′(x)

sin x .
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The equation
T ′(t)
T (t)

= −
X (x)
X ′(x)

sin x .

must be true for all values of t and x . This means that the LHS and the
RHS must be (the same) constant.

Hence
T ′(t)
T (t)

= C and −
X (x)
X ′(x)

sin x = C ,

where the constant C is as yet undetermined - it is called a separation
constant.

The separation procedure has turned the PDE into two ODEs

T ′ = CT and X ′ +
sin x
C

X = 0.
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The general solution of

T ′ = CT is T (t) = AeCt ,

where A is an arbitrary constant. The remaining equation is separable:

X ′ +
sin x
C

X = 0 ⇒
X ′

X
= −

1
C

sin x

⇒ ln(X ) =

∫
−
1
C

sin xdx

=
1
C

cos x + const

⇒ X (x) = Be
1
C cosx .

Then
ϕ(x , t) = X (x)T (t) = A′eCt+ 1

C cos x ,

where A, B, A′ = AB and C are constants.
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6.3 Separable Solution of the Wave equation

Suppose that we want to find a solution of the wave equation

∂2ϕ

∂t2 = c2 ∂
2ϕ

∂x2 for 0 < x < L (2)

and subject to the homogeneous boundary conditions

ϕ(0, t) = 0 and ϕ(L, t) = 0. (3)

Let’s look for a solution of the form

ϕ(x , t) = X (x)T (t). (4)

Then we can substitute (4) into (2) to obtain

X (x)T ′′(t) = c2X ′′(x)T (t)⇒
T ′′(t)
c2T (t)

=
X ′′(x)
X (x)

.

Observe that T ′′/(c2T ) is a function of t only while X ′′/X is a function
of x only. It follows that they must both be equal to the same constant.
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Denote the separation constant by

T ′′(t)
c2T (t)

=
X ′′(x)
X (x)

= −λ.

Note that λ is arbitrary so the choice of sign here is optional - it is chosen
like this to make the following calculation neater. Then

X ′′(x) = −λX (x) ⇒ X ′′(x) + λX (x) = 0

and
T ′′(t) = −c2λT (t) ⇒ T ′′(t) + λ′T (t) = 0,

where
λ′ = c2λ.

The values of λ must now be chosen so that the boundary conditions can
be satisfied and/or the time dependence is physically reasonable.
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Using boundary conditions to fix the separation constant

Let’s start by finding X (x). The equation

X ′′(x) + λX (x) = 0

leads to the auxiliary equation (on substituting X = emx)

m2 + λ = 0.

There are three possibility here:

(i) Case λ > 0. Here the solutions for X are oscillatory in x . Let
λ = k2 ⇒ m = ±ik . Then

X (x) = A cos kx + B sin kx .

For appropriate valies of k , we can satisfy the boundary conditions
this way - we will return to this case!
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Using boundary conditions to fix the separation constant

(ii) Case λ = 0. Here the auxiliary equation has a repeated root m = 0
and the general solution for X (x) is

X (x) = A + Bx .

Recall that the boundary conditions in this example are

(a) ϕ(0, t) = 0 and (b) ϕ(L, t) = 0.

The condition on x = 0 gives

ϕ(0, t) = X (0)T (t) = 0 (for all t > 0) ⇒ X (0) = 0 = A.

The condition on x = L then gives

X (L) = 0 = BL ⇒ B = 0 ⇒ X (x) = 0.

A solution that vanishes for all x is of no interest - it is a trivial solution.
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Using boundary conditions to fix the separation constant

(iii) Case λ < 0. Let λ = −κ2 ⇒ m = ±κ. Then

X (x) = Aeκx + Be−κx .

Now the boundary conditions give

X (0) = 0 = A + B ⇒ B = −A

and

X (L) = 0 = AeκL + Be−κL = A(eκL − e−κL) ⇒ A = 0 = B.

Here again there is only the trivial solution X (x) = 0, which is of no
interest.
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Using boundary conditions to fix the separation constant

Let us return to Case (i), λ = k2 > 0. Here we found the general solution

X (x) = A cos kx + B sin kx .

The condition on x = 0 gives

X (0) = 0 = A.

So we now know any such solution must be of the form

X (x) = B sin kx .

Next, the condition on x = L gives

X (L) = 0 = B sin kL.

Now, although B = 0 satisfies this condition, the resulting solution is the
trivial one, X (x) = 0, which is of no interest.
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Using boundary conditions to fix the separation constant
For a nontrivial solution we need

sin kL = 0 ⇒ kL = nπ, where n = 1, 2, 3, · · ·

⇒ k =
nπ
L

= ”kn”.

The resulting solutions

Xn(x) = B sin knx = B sin
(nπx

L

)
n = 1, 2, 3, · · ·

are examples of standing waves:

We don’t count n = 0 because k = 0 gives us the trivial solution.

We don’t count n < 0 because these give the same solutions
again, with a minus sign.
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Time dependence of standing modes

Given
λ = k2 → λ = k2

n =
(nπ

L

)2
,

we next solve

T ′′(t) + c2λT (t) = 0 ⇒ T (t) = C cos (cknt) + D sin (cknt)

= C cos
(

nπct
L

)
+ D sin

(
nπct

L

)
≡ Tn(t).

The combined solution of the wave equation can be written

ϕn(x , t) = Xn(x)Tn(t) = sin
(nπx

L

)[
C cos

(
nπct

L

)
+ D sin

(
nπct

L

)]
(we can drop B since there are already enough arbitrary constants in the
brackets).
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Matching initial conditions using Fourier series

The solutions

ϕn(x , t) = sin
(nπx

L

)[
C cos

(
nπct

L

)
+ D sin

(
nπct

L

)]
match the boundary conditions but not necessarily any imposed initial
conditions (unless we’re very lucky). We now take advantage of the
principle of superposition to write a more general solution

ϕ(x , t) =
∞∑

n=1

sin
(nπx

L

)[
Cn cos

(
nπct

L

)
+ Dn sin

(
nπct

L

)]
,

which still satisfies the boundary conditions ϕ(0, t) = 0 = ϕ(L, t). The
initial form

ϕ(x , 0) =
∞∑

n=1

Cn sin
(nπx

L

)
looks like a Fourier (sine) series!
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Matching initial conditions using Fourier series

The general solution looks like a Fourier (sine) series

ϕ(x , t) =
∞∑

n=1

Bn(t) sin
(nπx

L

)
with time-dependent Fourier coefficients

Bn(t) = Cn cos
(

nπct
L

)
+ Dn sin

(
nπct

L

)
.

We can find the remaining undetermined coefficients by comparing initial
conditions

ϕ(x , 0) =

∞∑
n=1

Bn(0) sin
(nπx

L

)
=

∞∑
n=1

Cn sin
(nπx

L

)

ϕt(x , 0) =

∞∑
n=1

B ′n(0) sin
(nπx

L

)
=

∞∑
n=1

nπc
L

Dn sin
(nπx

L

)
.
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Matching initial conditions using Fourier series

Example Solve the wave equation in
0 < x < L subject to the initial con-
ditions

ϕ(x , 0) =
4a
L2 x(L− x)

ϕt(x , 0) = 0.

Solution First impose the initial velocity

ϕt(x , 0) =
∞∑

n=1

B ′n(0) sin
(nπx

L

)
=

∞∑
n=1

nπc
L

Dn sin
(nπx

L

)
= 0

to deduce
Dn = 0

(for all n).
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Matching initial conditions using Fourier series

We know therefore that

ϕ(x , t) =
∞∑

n=1

Cn sin
(nπx

L

)
cos

(
nπct

L

)
,

where

ϕ(x , 0) =
∞∑

n=1

Cn sin
(nπx

L

)
=

4a
L2 x(L− x).

From the theory of Fourier series it can be shown (but not here) that

4a
L2 x(L− x) =

32a
π3

∑
odd n

1
n3 sin

(nπx
L

)
for 0 < x < L.

Therefore

ϕ(x , t) =
32a
π3

∑
odd n

1
n3 sin

(nπx
L

)
cos

(
nπct

L

)
.
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6.4 Separable Solution of the diffusion equation
Solve the heat/diffusion equation

∂ϕ

∂t
= D

∂2ϕ

∂x2 for 0 < x < L (5)

subject to the boundary conditions

ϕx (0, t) = 0 and ϕx (L, t) = 0. (6)

As usual look for solutions of the form

ϕ(x , t) = X (x)T (t). (7)

Substituting (7) into (5) we get

X (x)T ′(t) = DX ′′(x)T (t)⇒
T ′(t)
DT (t)

=
X ′′(x)
X (x)

.

As before, T ′/(DT ) is a function of t only while X ′′/X is a function of x
only and it follows that they must both be equal to the same constant.
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Denote the separation constant by

T ′(t)
DT (t)

=
X ′′(x)
X (x)

= −λ.

The equation for X is just like in the wave equation:

X ′′(x) = −λX (x) ⇒ X ′′(x) + λX (x) = 0,

while the time-dependent part is now a first-order ODE:

T ′(t) = −λDT (t).

Solutions are of the form T (t) = Ce−λDt , where C is any constant.

These seem reasonable if λ ≥ 0 but are exponentially growing if λ < 0,
which is unphysical for the diffusion equation.
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Using boundary conditions to fix the separation constant
For X (x), have the same three cases as in the wave equation.

(i) Case λ > 0. Letting λ = k2 we get, as in the wave equation,

X (x) = A cos kx + B sin kx .

We will return to this case!

(ii) Case λ = 0. Here the general solution for X (x) is

X (x) = A + Bx .

It satisfies the boundary conditions (7) if

X ′(0) = X ′(L) = 0 = B ⇒ X (x) = A = constant.

The corresponding solution of T ′ = −λDT = 0 is T = constant.
The result is a physically reasonable steady-state solution

ϕ(x , t) = A,

where A is any constant.
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Using boundary conditions to fix the separation constant

(iii) Case λ < 0. Let λ = −κ2. Then

X (x) = Aeκx + Be−κx .

Recall that the corresponding solution for T is exponentially growing
in this case, which is unphysical (for the heat/diffusion equation). This
case had better be excluded by the bcs! The boundary conditions give
(ϕx (0, t) = 0⇒)

X ′(0) = 0 = κA− κB ⇒ B = A

and (ϕx (L, t) = 0⇒)

X ′(L) = 0 = κAeκL − κBe−κL = κA(eκL − e−κL) ⇒ A = 0 = B.

Here again there is only the trivial solution X (x) = 0, which is of no
interest. The unphysical case is excluded.
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Using boundary conditions to fix the separation constant

Let us return to Case (i), λ = k2 > 0. Here we found the general solution

X (x) = A cos kx + B sin kx .

The condition on x = 0 gives (ϕx (0, t) = 0⇒)

X ′(0) = 0 = kB.

So we now know any such solution must be of the form

X (x) = A cos kx .

The condition on x = L gives (ϕx (L, t) = 0⇒)

X ′(L) = 0 = −kA sin kL.

The solution with A = 0 is trivial and of no interest.
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Using boundary conditions to fix the separation constant

For a nontrivial solution we need (this next bit is very close to the wave
equation example)

sin kL = 0 ⇒ kL = nπ, where n = 1, 2, 3, · · ·

⇒ k =
nπ
L

= ”kn”.

Remark
The case n = 0 also works here but it is strictly speaking the solution
from Case (ii). We add it to the final list of solutions below:

Xn(x) = A cos knx = A cos
(nπx

L

)
n = 0, 1, 2, 3, · · · .
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Time dependence of standing modes

Recall that the corresponding solutions of the time-dependent ODE, with

λ = k2 → λ = k2
n =

(nπ
L

)2
,

are
T (t) = Ce−λDt = e−k2

n Dt = Ce−n2π2Dt/L2 ≡ Tn(t).

The combined solution of the diffusion equation can be written

ϕn(x , t) = Xn(x)Tn(t) = C cos
(nπx

L

)
e−n2π2Dt/L2

.

We now take advantage of the principle of superposition to write a
more general solution

ϕ(x , t) =
∞∑

n=0

Cn cos
(nπx

L

)
e−n2π2Dt/L2

,

which still satisfies the boundary conditions ϕx (0, t) = 0 = ϕx (L, t).
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Matching initial conditions using Fourier series
This more general solution

ϕ(x , t) =
∞∑

n=0

Cn cos
(nπx

L

)
e−n2π2Dt/L2

,

can be thought of as a Fourier (cosine) series

ϕ(x , t) =
A0

2
+

∞∑
n=1

An(t) cos
(nπx

L

)
with time-dependent Fourier coefficients

A0 = 2C0

An(t) = Cne−n2π2Dt/L2

and the constants Cn can be determined by matching to a (single) initial
condition as a Fourier (cosine) series:

ϕ(x , 0) =
A0

2
+

∞∑
n=1

An(0) cos
(nπx

L

)
= C0 +

∞∑
n=1

Cn cos
(nπx

L

)
.
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Matching initial conditions using Fourier series
Example Solve the heat equation in
0 < x < L subject to the initial con-
dition

ϕ(x , 0) = 100
L− x

L

and insulating bcs at each end.

Solution It can be shown (but not here) that the given initial condition
can be written as a Fourier (cosine) series

ϕ(x , 0) = 50+
400
π2

∑
n odd

1
n2 cos

(nπx
L

)
.

By matching this initial condition with the general solution ϕ(x , t) we get

ϕ(x , t) = 50+
400
π2

∑
n odd

1
n2 cos

(nπx
L

)
e−n2π2Dt/L2

.
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6.4 Separable Solution of the Laplace equation

Solve the heat/diffusion equation

∂2ϕ

∂x2 +
∂2ϕ

∂y2 = 0 (8)

in the rectangle 0 < x < a and 0 < y < b
subject to the boundary conditions

1○ ϕ(x , 0) = 0 for 0 < x < a

2○ ϕx (a, y) = 0 for 0 < y < b

3○ ϕ(x , b) = h(x) for 0 < x < a

4○ ϕ(0, y) = 0 for 0 < y < b.

This time we look for solutions of the form

ϕ(x , y) = X (x)Y (y). (9)
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Substituting ϕ(x , y) = X (x)Y (y) into (8) we get

X ′′(x)Y (y) + X (x)Y ′′(y) = 0⇒
X ′′(x)
X (x)

= −
Y ′′(y)
Y (y)

= −λ.

As before, X ′′/X is a function of x only and -Y ′′/Y is a function of y
only and it follows that they must both be equal to the same constant,
which we have set equal to −λ.

The two resulting ODEs can be written as

X ′′(x) + λX (x) = 0

Y ′′(y)− λY (y) = 0.

Note that λ appears with opposite sign in these equations! We have no a
priori reason to expect one sign of λ to be more physical than the other.
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Using boundary conditions to fix the separation constant

(i) Case λ > 0. Letting λ = k2 we get

X (x) = A cos kx + B sin kx

Y (y) = Ceky + De−ky .

(ii) Case λ = 0. Here the general solution for X (x) and Y (y) are

X (x) = A + Bx

Y (y) = C + Dy .

(iii) Case λ < 0. Letting λ = −k2 we get

X (x) = Aekx + Be−kx

Y (y) = C cos ky + D sin ky .

In cases (ii) and (iii), the bcs ϕ(0, y) = 0 = ϕx (a, y) ⇒ X (0) = 0 =
X ′(a) give only the trivial solution X (x) = 0.
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Using boundary conditions to fix the separation constant

Let us return to Case (i), λ = k2 > 0. Here we found the general solution

X (x) = A cos kx + B sin kx .

The condition on x = 0 gives (ϕ(0, t) = 0⇒)

X (0) = 0 = A.

So we now know any such solution must be of the form

X (x) = B sin kx .

The condition on x = a gives (ϕx (a, t) = 0⇒)

X ′(a) = 0 = kB cos ka.

The solution with B = 0 is trivial and of no interest.
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Using boundary conditions to fix the separation constant

For a nontrivial solution we need

cos ka = 0 ⇒ ka =
nπ
2
, where n = 1, 3, 5, · · ·

⇒ k =
nπ
2a

= ”kn”.

The list of solutions is then:

Xn(x) = B sin knx = B sin
(nπx

2a

)
n = 1, 3, 5, · · · .
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Towards a full solution

The corresponding solution for Y (y) is

Yn(y) = Cekny + De−kny = Cenπy/(2a) + De−nπy/(2a)

and the combined solution of the Laplace equation can be written

ϕn(x , y) = Xn(x)Yn(y) = sin
(nπx

2a

)(
Cenπy/(2a) + De−nπy/(2a)

)
.

We use principle of superposition to write a more general solution

ϕ(x , y) =
∑
n odd

sin
(nπx

2a

)(
Cnenπy/(2a) + Dne−nπy/(2a)

)
which still satisfies the boundary conditions ϕ(0, y) = 0 = ϕx (a, y). We
choose the coefficients Cn and Dn to satisfy the remaining bcs on y = 0
and y = b.

MTHS2007 Advanced Mathematics for Engineers 41



Towards a full solution

The boundary condition on x = 0 gives

ϕ(x , 0) = 0 =
∑
n odd

sin
(nπx

2a

)
(Cn + Dn) ⇒ Dn = −Cn.

Then

ϕ(x , y) =
∑
n odd

Cn sin
(nπx

2a

)(
enπy/(2a) − e−nπy/(2a)

)
=

∑
n odd

2Cn sin
(nπx

2a

)
sinh

(nπy
2a

)
.

Finally, the remaining coefficients Cn are determined by matching to the
boundary condition on y = b (as a function of x):

ϕ(x , b) =
∑
n odd

2Cn sin
(nπx

2a

)
sinh

(
nπb
2a

)
= h(x).
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