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Statistics: Introduction

Statistics concerns decision making in the presence of uncertainties and
involves dealing with information from given data. Subsequent analysis is
informed by probability theory.

In dealing with data the whole ‘population’ (i.e. all possible values) would
ideally be evaluated but this is usually impractical for reasons such as

Expense The population may be too large or testing each item
may be expensive.

Destructiveness Testing may require dismantling or running to
destruction.

The starting point is usually data about a sample of the population, col-
lected to represent the whole population.

In Statistics, we aim to draw conclusions about the whole population
based on the sample(s).
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Since the data samples are subject to random variation, we need to use
probability models to quantify this variation and make informed, rational
decisions based on probabilities.

Therefore, we suppose that the individual data points are random obser-
vations from some underlying probability distribution.

In realistic situations, we do not know this distribution exactly. However,
the data will often approximately follow standard distributions such as
those we have met previously. For instance:

Continuous data, such as lengths/weights/strengths are often well
modelled by a normal distribution;

Discrete data, such as counting the number of times some event
of interest occurs, are often well modelled by a binomial or Poisson
distribution.
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Population vs Sample

Population characteristics are properties of the entire population of inte-
rest.

Sample characteristics are properties of the sample we have observed.
We use the sample to estimate unknown population characteristics.

For example, suppose we assume our sample values are random observati-
ons from a wider population, which we assume to be normally distributed
with unknown mean µ and variance 1.

Then each data point is an observation of a random variable X , with

X ∼ N(µ, 1).

We might estimate the true, unknown, population mean µ using the mean
of our observed sample.
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Example: Two hundred and sixty six lengths of cable were chosen at
random from the production run of a cable manufacturer and the load
necessary to break each of these cables was determined. The data are
tabulated on the following slide.

A statistical analysis might proceed as follows:

What is a suitable probability model for the observed data?

What characteristic of the population are we interested in, and
how can we estimate it?

How can we quantify how certain we are about any conclusions we
make?
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Applied Load (tons) Number of Cables
< 9.0 0

9.0 - 9.2 1
9.2 - 9.4 8
9.4 - 9.6 26
9.6 - 9.8 35
9.8 - 10.0 40
10.0 - 10.2 54
10.2 - 10.4 37
10.4 - 10.6 26
10.6 - 10.8 19
10.8 - 11.0 18
> 11.0 2
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Often it is useful to show the sample results graphically, e.g. as a histo-
gram. This can help to check if an assumed probability distribution for
the data is reasonable.
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Summary statistics (e.g sample mean, sample variance / standard de-
viation) can also be calculated. These are the sample versions of the
theoretical quantities derived from probability distributions, such as E [X ]
and V [X ].

These theoretical quantities often correspond to parameters of the pro-
bability distribution, and therefore represent the true population value.

For example, E [X ] = µ, the population mean (or equivalently, the mean
of the underlying probability distribution we have assumed for the data).

The sample mean is calculated from the observed data, and would hope-
fully be a ‘good estimate’ of the true population mean µ.
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Sample Mean and Variance

Suppose we collect a sample of n data points and label them x1, x2, . . . , xn.

Sample Mean

x̄ =
1
n

(x1 + x2 + · · ·+ xn) =
1
n

n∑
i=1

xi

is a statistic to estimate the population mean;

Sample Variance

s2 =
1

n − 1

n∑
i=1

(xi − x̄)2 =
1

n − 1

(
n∑

i=1

x2
i − nx̄2

)
is a statistic to estimate the population variance.
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Example: Data values for concentration (in %) were obtained from
measures on 20 samples of a chemical solution:

87 86 85 87 86 89 81 77 85 88

86 84 83 83 82 84 83 79 82 73

Sample Mean: x̄ =
1
20

20∑
i=1

xi =
87 + 86 + · · ·+ 73

20
= 83.5

Sample Variance:
20∑
i=1

x2
i = 872 + 862 + . . .+ 732 = 139728

s2 =
1

n − 1

(
n∑

1=1

x2
i − nx̄2

)
=

1
19

(139728− 20× 83.52) ≈ 14.8947

s =
√
14.8947 . . . ≈ 3.86
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Sampling

A key concept is that we are usually dealing with only a sample selected
from an underlying population.

If X1, . . . ,Xn are random variables measuring a quantity of interest then
we usually obtain sample values x1, ..., xn to try and infer information
about the population from which X1, . . . ,Xn are drawn.

The general method of approach is to define a Statistic Y (a NEW
random variable) based on X1, . . . ,Xn, and use the observed sample values
x1, ..., xn to calculate the sample statistic y . This is used to estimate
quantities associated with the population.

The distribution of Y and the accuracy of the estimate will depend on
the sample size, n, and the distribution of each Xi .
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Statistical Inference

Statistical inference is concerned with using probability concepts to quan-
titatively deal with the uncertainty arising due to using representative
samples in making decisions.

The basis is to obtain samples (from a population) to analyze and infer
properties of the whole population.

For example, to obtain the ‘true’ (i.e. population) average concentration
of a contaminant in a lake, one would need to test all the water!

Clearly this is not desirable or feasible, so an alternative is to take a
number of random samples and obtain an estimate of the contaminant
level from the samples.
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This raises a number of questions, such as:

How should we estimate the true population value?

How does the sample size affect the accuracy of the estimate?

How different might a sample estimate be from the true population
value?

How sure can we be that the population value lies within an
acceptable range of the sample value?

The process of answering such questions is known as statistical inference,
which is broadly divided into three sections:
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1 Sampling Distributions
Identifying a suitable probability distribution which captures the
features of the population (and samples drawn from it).

2 Estimation
To use sample values to infer, or estimate, a value of a parameter
of the population. This may involve giving a likely range of values
called a confidence interval.

3 Hypothesis Testing
To make decisions, and to assign a probability of error when
accepting or rejecting a given hypothesis.

A fundamental concept is that any collection of random variables Xi will
form a statistic Y , say, given by Y = g(X1,X2, . . . ,Xn) for some function
g. Each of the quantities Xi will have its own distribution but also Y will
have its own probability distribution.
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Example:

5 measurements of contaminant concentration in a lake were taken, giving
a sample of

57.4 59.5 62.1 56.6 58.2

Then an estimate of the true mean concentration might be
1
5 (57.4 + 59.5 + 62.1 + 56.6 + 58.2) = 58.76 (sample mean)

In this case, n = 5, X1, . . . ,X5 are the random variables representing the
measurements to be taken, and x1, . . . , x5 are the corresponding observed
sample values.

The quantity Y = X̄ , the mean of X1, . . . ,X5, is also a random variable
(it is a function of other random variables) and so will have its own
distribution. The corresponding sample statistic y is the observed sample
mean, 58.76.

Decisions/conclusions will be based on comparing the observed statistic
y with the probability distribution of Y .
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Sampling distribution of the mean:

We focus on the case where data Xi ∼ N(µ, σ2) are independent.

Then Y = X̄ = 1
n

∑n
i=1 Xi is the sample mean.

We can show that E (X̄ ) = µ and V (X̄ ) = σ2/n.

In fact X̄ ∼ N(µ, σ2/n).

The Central Limit Theorem says that if the Xi are independent but
not Normal then so long as n is large we still have X̄ approximately
N(µ, σ2/n).

In either case we have Z =
X̄ − µ
σ/
√

n
∼ N(0, 1).
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Confidence Intervals

Given values X1,X2, . . . ,Xn, then a suitable statistic can be constructed
to estimate a population value.

However, this gives no information about the accuracy of the estimate.

From knowledge of the distribution of the sample statistic one can pro-
ceed further to determine an interval within which the population value
might lie with a specific probability.

Such a prescribed probability is called the confidence level and the re-
sulting interval the confidence interval.

The confidence level may be expressed as a probability, e.g. 0.95, but is
often given as a percentage, e.g. 95% confidence level.
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As an example of the method, consider the case of independent samples
Xi , each with a Normal distribution N(µ, σ2) with σ assumed known.

Then we know Z =
X̄ − µ
σ/
√

n
∼ N (0, 1).

From the tables of N(0, 1), we
can determine that |Z | < 1.96
with confidence level of 95%.

so the interval −1.96 < Z < 1.96
has an associated probability of
0.95.

Thus −1.96 <
X̄ − µ
σ/
√

n
< 1.96 with confidence level 95%.
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Rearranging for µ, we obtain

X̄ − 1.96
σ√
n
< µ < X̄ + 1.96

σ√
n
.

When a value for X̄ is observed from a sample of data (i.e. the sam-
ple mean x̄), a confidence interval can be obtained within which the
population value is expected to lie with the specified confidence level.
(Interpretation requires care.)

Substituting x̄ in place of X̄ in the above formula, we obtain our observed
95% confidence interval for the unknown µ:

x̄ − 1.96
σ√
n
< µ < x̄ + 1.96

σ√
n
.

So long as n is ‘large’, the same argument works even if σ2 is not known
(estimated from the data) and/or the sample data do not follow a Normal
distribution.
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So the endpoints of the confidence interval are x̄ ± 1.96 σ√
n .

We write this as x̄ ± C σ√
n , where C satisfying P(|Z | > C ) = 0.05.

For a general confidence level 100(1 − α)% the same formula applies,
with C = zα/2 satisfying

P(|Z | > C ) = α or P(Z > zα/2) = α/2.

Table for finding C :
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Examples

In a sample of 10 components from a manufacturing process the measured
sizes were

4.32, 4.35, 4.34, 4.30, 4.37, 4.39, 4.35, 4.35, 4.30, 4.33.

Assuming the distribution of component sizes is normal and has standard
deviation 0.03, obtain the 95% confidence interval for the mean size
produced in this process.

Solution: Write Xi ∼ N(µ, σ2) for the sizes.

Endpoints of the CI are x̄ ± 1.96 σ√
n .

Here σ = 0.03, n = 10 and x̄ = 1
10

∑
i xi = 4.34.

So the endpoints are 4.34± 1.96 0.03√
10
≈ (4.32140 . . . , 4.35859 . . . ).

Conclude that µ ∈ (4.32 , 4.36) with 95% confidence.
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Example: Based on a survey of 140 employees in a firm, the mean and
standard deviation of the commuting distances between home and the
place of work are found to be 8.6 miles and 4.3 miles, respectively.

Determine a 90% confidence interval for the mean commuting distance
for the population of all employees of the firm.

Solution: Z =
X̄ − µ
σ/
√

n
∼ N (0, 1) (Standardized Normal variate)

From Normal table,

P (|Z | < C ) = 0.90 for C = 1.645.

Thus, |Z | < C = 1.645 with 90% probability.
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So a 90% confidence interval for µ is

X̄ − 1.645
σ√
n
< µ < X̄ + 1.645

σ√
n
.

Replacing the unknown σ with its sample estimate s (the sample size n
is 140, definitely ‘large’), the confidence interval is

8.6− 1.645
4.3√
140

< µ < 8.6 + 1.645
4.3√
140

.

So the 90% CI for the mean commuting distance µ is (8.0, 9.2).
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Use of Confidence Intervals

Confidence intervals for the mean give a range of values of the
unknown parameter µ which are consistent with the observed data.
(A range of plausible values for the true mean.)

=⇒ Learning about the process/system being studied.

Sometimes it is useful to interpret this in relation to a particular
question relating to the process/data being investigated/collected.

=⇒ Comparing this learnt information with the past / standards
/ specified requirements. (cf. Hypothesis testing.)
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Possible conclusions

The process/system is operating above/below the
standard/historical level.

What to do next is usually fairly clear.

No conclusive evidence that the process/system is operating
above/below the standard/historical level.

What to do next is context-dependent. And also dependent on
how wide the CI is.)

Possibilities include: need to collect more data, take some action
since some undesirable situation is plausible, take no particular
action since some desirable situation is plausible, do nothing, . . . .
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Example

Suppose that in the manufacturing process example the specified
size of the components is 4.3.

The 95% CI for the mean size produced is (4.32, 4.36).

This suggests that the mean component size has moved away from
the specification, so some intervention/recalibration is necessary.

What about the following situations?

Data relating to a safety standard.

Data relating to performance of a new product.
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Confidence Level and Precision of Estimation

Our choice of confidence level was essentially arbitrary.

What if we had chosen a higher level of confidence, say 99%?

(It seems reasonable that we would want the higher level of confidence.)

At α = 0.01, we obtain C = 2.58, while for α = 0.05, C = 1.96.
Thus, the width of a 95% confidence interval is

2× 1.96
σ√
n

= 3.92
σ√
n
.

However, the length of the 99% confidence interval is

2× 2.58
σ√
n

= 5.16
σ√
n
.

The 99% confidence interval is wider than 95% interval.
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The wider the confidence interval, the more confident we are that the
interval actually contains the true value of µ. On the other hand, the
wider the interval, the less information we have about the true value of
µ.

Note that the larger the sample size, the narrower the confidence interval
is (for fixed α and σ). So for known σ (or s), we could fix α and then
calculate the sample size needed for a desired width of confidence interval
(level of precision).

Example: If σ = 10, what sample size is needed to achieve a 95% confi-
dence interval of width 8 or less?

We need 2× 1.96×
10√

n
≤ 8.

This implies that n ≥ 24.01 . . . .

So a sample size of n = 25 is needed to obtain the desired precision.
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More examples

Example: Testing of 40 samples from a reservoir gave the following mea-
surements for a contaminant concentration, in µg / l (micrograms per
litre).

∑
i xi = 14, 042

∑
i x

2
i = 4, 934, 319

Determine the sample mean and sample standard deviation of the con-
centration of the contaminant.

Calculate 95% and 90% confidence intervals for the mean contaminant
level in the reservoir.

What do the results tell us about the level of contamination in the lake
compared to environmental standards that specify a maximum safe level
of 350µg / l?
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Example: Studies of CO concentration near a motorways gave the follo-
wing measurements xi in ppm (parts per million).

∑
i xi = 3, 726

∑
i x

2
i = 393, 355,

based on 36 samples.

Compute a 99% confidence intervals for the mean CO concentration
along the motorway.

What does this data suggest about the mean CO concentration in com-
parison to a quality standard which says that the concentration should
not exceed 70 ppm?
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